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Abstract Many popular models conceptualize working
memory as consisting of three or four discrete slots or
bins. This conceptualization, however, has been seemingly
refuted by Bays and Husain (2009), who reported perfect
performance on a working memory task with a large
number of very simple items. We show, however, that this
perfect-performance result likely reflects a design flaw
rather than mnemonic structure. The flaw is that the test
array itself in Bays and Husain’s study provides informa-
tion about the correct answer without recourse to working
memory. We show perfect performance on eight items for
18 participants when this information is present. We show
that performance is poorer, however, when this information
is removed. Hence, the Bays and Husain result does not
threaten models that stipulate that working memory is
composed of limited slots.
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Working memory refers to the information that is con-
sciously available at a point in time. It is well known that
such memory is highly limited, but the nature of the limit
remains controversial (Cowan & Rouder, 2009; Miyake &
Shah, 1999; Osaka, Logie, & D’Esposito, 2007). One
popular conceptualization is that working memory consists

of a fixed number of discrete slots in which items or chunks
are temporarily held (Cowan, 2001; Luck & Vogel, 1997;
Miller, 1956). Nonetheless, there are alternative viewpoints
in which fine gradations of mnemonic resources may be
spread across several objects (Bays & Husain, 2008;
Wilken & Ma, 2004). We refer to the former view as the
discrete-slots model and to the latter alternative as the
distributed-resources model.

The evidence for the discrete-slots model comes from
three types of results. First, in a variety of paradigms, a
model-based estimate of the number of discrete slots
converges to about three or four items in adults (Cowan,
2001). Cowan, Fristoe, Elliott, Brunner, and Saults (2006),
for example, showed that model-based estimates of the
number of slots were constant at 3.5 items when the
number of to-be-remembered items was manipulated
across a large range. A second source of evidence is
that items are seemingly stored in working memory as
unitized wholes, without regard to their complexity. Luck
and Vogel (1997), for example, manipulated the number of
features in each object and found no effect of this type of
complexity, supporting the view that objects are stored as
wholes. Similar manipulations with cubes and Chinese
characters from Awh, Barton, and Vogel (2007) and
Barton, Ester, and Awh (2009) also support the invariance
of capacity with respect to item complexity. A third
source of evidence is that working memory performance
seems to follow two distinct patterns: performance either
reflects characteristics of the studied item or seems to be
from a noninformative guessing state (Rouder, et al.,
2008; Zhang & Luck, 2008).

Several studies have questioned these findings (e.g.,
Alvarez & Cavanagh, 2004; Bays & Husain, 2008;
Wheeler & Treisman, 2002; Wilken & Ma, 2004). Perhaps
the one study that most forcefully calls into question the
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discrete-slots model is Bays and Husain’s (2009) demon-
stration of perfect working memory performance for large
numbers of to-be-remembered items. This result is
troublesome from a discrete-slots point of view because
capacity limits are not flexible and cannot accommodate
large numbers of items.

In Bays and Husain’s (2009) paradigm, squares of
various colors were presented at study. At test, just a half
second later, a single square was presented, but it was
displaced to either the left or right of its studied position.
Figure 1A shows the paradigm we have adapted from Bays
and Husain (2009), and it captures the important elements
of their design.1 If one square is presented at study,
memory performance follows a very reasonable pattern—
performance improves as the displacements become larger
in magnitude, and performance quickly approaches ceiling.
This behavior is shown in Fig. 1B as the dashed-and-dotted
curve. The dependent measure is the proportion of trials
judged to have a rightward displacement. This proportion is
near .5 when the displacement is small, approaches 0.0 for
large leftward displacements and approaches 1.0 for large
rightward displacements. The limits of 0.0 and 1.0 denote
perfect performance for leftward and rightward displace-

ments, respectively. The critical case is when more items are
presented at study than can be stored in working memory.
According to the discrete-slots model, some of these items
will not be in memory at all, and participants must
occasionally guess without information. The consequence
of this guessing is that even for arbitrarily large displace-
ments, performance will not be perfect. Predictions for the
discrete-slots model are shown by the solid curve in Fig. 1B.
A contrasting prediction for this critical case of many items
is made by the distributed-resources model. Although each
item may receive only a small portion of the fixed mnemonic
resources, this small portion is presumably sufficient for
detecting arbitrarily large displacements. The consequence is
that perfect performance may be obtained, even with large
numbers of to-be-remembered items, if the items are
sufficiently displaced. This predicted behavior is shown by
the dashed curve in Fig. 1B. The key difference is that while
the distributed-resources model can account for perfect
performance, the discrete-slots model cannot.

Bays and Husain (2009) examined performance for six
items and found that it was perfect for large displacements
across 4 participants (their data are shown as the circles in
Fig. 1B). In fact, this result is replicable, and we show here
the same perfect-performance result across a sample of 18
naive participants memorizing eight items. On its face, this
perfect-performance result contradicts the discrete-slots
model. We believe, however, that the Bays and Husain
(2009) paradigm is flawed, and the perfect-performance
result is an artifact of this flaw. In this report, we introduce
a modified version of the Bays and Husain (2009) paradigm
that does not suffer from this flaw. Performance in our
version of the task does not reach perfection, even with

1 There are a few minor procedural differences between the experi-
ment reported here and Bays and Husain (2008, 2009): (1) Bays and
Husain presented the study array of squares offset to either the left or
right, so that they could measure initial eye movements. We presented
our study array centered. (2) Bays and Husain maintained their
fixation cross throughout study. We provided a fixation cross first, but
removed it during study. (3) Bays and Husain displayed test items for
250 ms, whereas we displayed them until response. Given that we
replicated their perfect-performance results, it may be safely conclud-
ed that these minor variations are inconsequential.
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Fig. 1 (A) The paradigm used in the present study is adapted from
Bays and Husain (2009). (B) Predictions of working memory models
and data from Bays and Husain (2009). Predictions for arrays of one
item are identical for the discrete-slots and distributed-resources
models (dashed-and-dotted curve). Predictions differ, however, for
arrays of six items. The discrete-slots model predicts imperfect

performance, even with large displacements (solid curve). The
distributed-resources model, in contrast, predicts perfect performance
with arbitrarily large displacements (dashed curve). The data from
Bays and Husain (2009) in the six-item condition are denoted as
points, and these data are seemingly incompatible with the discrete-
slots model

Psychon Bull Rev (2011) 18:958–963 959



large displacements. We conclude that the perfect-
performance result is not valid and cannot be used to argue
against a discrete-slots working memory model.

The flaw in Bays and Husain’s (2009) paradigm is that
the position of the item at test is correlated with the
direction of displacement. Figure 1 demonstrates this
correlation. Even without observing the study array, it is
obvious that the test item must have moved left because it
could not have been further left at study. This correlation is
present even when the test item is not so close to the
display edge. Most troubling, it grows more pronounced
with larger displacements. Participants may adopt a simple
strategy: Respond “leftward” if the test item is on the left
side of the screen, and “rightward” otherwise. This strategy
produces high levels of accuracy for large displacements,
even in the absence of any memory for the studied display.
In fact, performance from this guessing strategy will
become perfect as the displacements grow arbitrarily large.
We worry that Bays and Husain’s (2009) perfect perfor-
mance result may reflect a guessing strategy rather than a
fundamental signature of the working memory system.

To correct for this flaw, the paradigm may be modified
so that the position of the test item reveals no information
about the direction of displacement. To do so, we simply
presented the test item at the horizontal center of the screen.
The remaining study locations were randomly chosen from
a distribution symmetric around the center, and consequently,
the test display provided no information about the direction of
displacement. If perfect performance with large displacements
for large numbers of to-be-remembered items is a signature of
the mnemonic system, the perfect-performance result should
be observed even when the test item is presented at the center
of the display.

In the following experiment, we manipulated the testing
procedure. In the test-anywhere condition, adapted from
Bays and Husain (2009), the position of each item at study
was drawn randomly. The position of each test item was
determined by adding a displacement amount to the studied
position. In the test-at-center condition, the studied position
was chosen such that the position of the test item was
horizontally centered on the screen.

Method

Participants A group of 36 students (21 female, 15 male) at
the University of Missouri completed the experiment as
part of an Introduction to Psychology course requirement.

Design and stimuli The factors of Array Size (either one,
three, or eight items), Displacement (10 levels), and Testing
Condition (test anywhere vs. test at center) were manipu-
lated in a mixed design. Array size and displacement were

varied in a within-subjects manner; test condition was
varied in a between-subjects manner, with 18 participants
per test condition level.

In the test-anywhere condition, the position of the studied
squares were selected at random from a 12° × 22.5° region
centered on the display. One item was displayed at test, and it
was displaced from the study position as follows. To ensure
that people were not always at ceiling, we used the following
displacements: When one item was studied, the 10 levels of
displacement were {±0.4°, ±0.8°, ±1.2°, ±1.6°, ±12°}.
Displacements for the three-item and eight-item arrays were
{±0.8°, ±1.6°, ±2.4°, ±3.2°, ±12°} and {±1.6°, ±3.2°, ±4.8°,
±7.2°, ±12°}, respectively. Note that in all conditions, the
largest absolute displacement was 12° of visual angle.

In the test-at-center condition, the positions of all studied
items that were not to be tested were selected at random
from a 26.4° × 15° region centered on the display. The
tested item was studied at a point such that the test was
always at the center (at the negative value of the
displacement level). The levels of displacement were
{±0.6°, ±1.2°, ±1.8°, ±2.4°, ±12°} for one-item study
arrays, {±1.2°, ±2.4°, ±3.6°, ±4.8°, ±12°} for three-items
study arrays, and {±2.4°, ±4.8°, ±7.2°, ±9.6°, ±12°} for the
eight-item arrays. Note that in all conditions, the largest
absolute displacement was 12° of visual angle.

The items in each display were squares that subtended
0.9° of visual angle on a side. Items were drawn at one of
either 13 (test-anywhere) or 11 (test-at-center) fixed vertical
positions on the screen. Horizontal positions chosen such
that the total distance between the centers of any two
squares subtended at least 1.75°. Each square on a trial was
a unique color, with the colors drawn randomly from a
palette of eight primary colors. Participants were seated 50
and 72.5 cm from the screen for the test-anywhere and test-
at-center conditions, respectively. The screen itself, a 17-in.
Apple iMac display, subtended a 42.4° × 26.5° region in the
test-anywhere condition and a 28.8° × 18° region in the
test-at-center condition. Displays were presented with the
Psychophysics Toolbox (Kleiner, Brainard, & Pelli, 2007).

Procedure Trials began with 500 ms of fixation, followed
by the study array presented for 1,000 ms. Following study,
a blank screen was presented for 500 ms, followed
immediately by the test item, which remained visible until
a response was made. Following response, a 1,000-ms
blank screen preceded the start of the next trial. Participants
indicated that the test item had moved to the left or right by
using the “z” and “/” keys with the left and right index
fingers, respectively. Participants received positive auditory
feedback following correct responses, and no feedback
following incorrect ones. Sessions began with a practice
block of 6 trials. This was followed by seven experimental
blocks of 60 trials each.
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Results

Data from 1 participant in the test-at-center condition were
discarded because responses were exceedingly fast. For the
remaining participants, responses faster than 200 ms and
slower than 10 s were discarded. These trials comprised
less than 0.1% and 0.4% of total trials for the test-anywhere
and test-at-center conditions, respectively. Other reasonable

choices of response windows, such as from 250 ms to 2 s,
did not change the results appreciably.

Figure 2 shows the proportions of rightward responses as
a function of displacement across testing and array size
conditions. In these plots, the values 0.0 and 1.0 serve as
the perfect-performance limits for leftward (negative) and
rightward (positive) displacements, respectively. The left
and right columns show data from the test-anywhere and
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Fig. 2 Proportions of rightward
responses as a function of
displacement across array size
and testing conditions.
The gray and black curves
denote individual and
averaged proportions,
respectively. Performance
approaches ceiling levels in the
test-anywhere condition, but
remains error prone in the
test-at-center condition
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test-at-center conditions, respectively. As can be seen,
performance in the test-anywhere condition is nearly
perfect for a range of displacements for array sizes of one,
three, and even eight items. These findings replicate Bays
and Husain’s (2009) result that performance can reach
ceiling with sufficiently large displacements, even for
numbers of items that exceed typical capacity estimates.
Performance in the test-at-center condition, displayed on
the right in Fig. 2, is perfect or nearly perfect for arrays of
one and three items with large displacements. In the eight-
item condition, however, average performance never
reaches ceiling with large displacements. Instead, perfor-
mance asymptotes at about 80%, and the vast majority of
participants do not achieve near-perfect performance.

Discussion

Bays and Husain (2009) found that participants were able
to reach perfect performance for large displacements even
after studying arrays of six items. We replicated this result
with arrays of eight items across 18 naive participants. Yet
this result only held in the test-anywhere condition, the one
in which test position was necessarily correlated with the
direction of displacement. When this correlation was
removed by placing test items in the horizontal middle of
the screen, participant performance was reliably less than
perfect. Therefore, the observed perfect performance may
be due to artifactual correlation rather than to supercapacity
working memory performance.

It is reasonable to wonder whether placing the test at the
horizontal center changed the nature of the paradigm. In the
test-anywhere condition, participants had motivation to
encode the position of the item. In the test-at-center
condition, however, this motivation was not present.
Participants need not remember the actual studied positions,
but, rather, whether the item was left or right of center. It
seems plausible, therefore, that the position was coarsely
and categorically coded, with the categories “left” and
“right.”While we readily admit that coding may have varied
across the testing conditions, this variation does not threaten
the lack-of-perfect-performance conclusion. According to a
distributed-resources account, memory varies with resour-
ces, and if anything, the test-at-center condition with coarse
coding would require no more resources than the test-
anywhere condition. Consequently, participants should have
done as well in the test-at-center condition as they did in the
test-anywhere condition. They did markedly worse, however,
indicating that the high performance in the test-anywhere
condition reflected the methodological design flaw rather
than supercapacity working memory performance.

It may seem natural to ask whether the test-at-center data
better support a discrete-slots or a distributed-resources

model. We think the paradigm is not especially well suited
for this question, for a number of reasons. First, we worry
about coarse and categorical coding, which may possibly
promote chunking or grouping (Cowan, 2001; Miller,
1956). If participants chunked or grouped, we would not
necessarily expect to see a constant capacity. Other testing
procedures that discourage chunking, such as Zhang and
Luck’s (2008), are better candidates for competitively
testing the models. Second, the design choices were made
to best assess perfect performance. They are not ideal for
differentiating between the models. In particular, we do not
have enough small displacements with eight items to assess
how the slopes of the response functions change across set
size.

Conclusion

In this article, we have shown that Bays and Husain’s
(2009) claim that working memory may be perfect for
many items is seemingly the result of an artifact. In their
task, there is an unwanted correlation between displacement
and test position, with extreme test positions providing
information about the direction of displacement without
recourse to memory. We contend that participants use this
correlation, and have shown that performance is far from
perfect when the test position is uncorrelated with displace-
ment direction. Therefore, the perfect-performance result is
not a signature of the working memory system and cannot
be used to falsify the discrete-slots approach.

Author Note This research was supported by NSFGrant SES-0720229.
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