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A dominant theme in modeling human perceptual judgments is that sensory neural activity is summed or
integrated until a critical bound is reached. Such models predict that, in general, the shape of response time
distributions change across conditions, although in practice, this shape change may be subtle. An alternative
view is that response time distributions are shape invariant across conditions or groups. Shape invariance is
predicted by some race models in which the first of several parallel fibers to communicate the signal
determines the response. We competitively assess a specific gradual growth model, the one-bound diffusion
model, against a natural shape-invariant competitor: shape invariance in an inverse Gaussian distribution.
Assessment of subtle shape change versus shape invariance of response time distributions is aided by a
Bayesian approach that allows the pooling of information across multiple participants. We find, conditional
on reasonable distributional assumptions, subtle shape changes in response time that are highly concordant
with a simple diffusion gradual growth model and discordant with shape invariance.
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This theoretical note concerns how people and animals make
quick perceptual judgments. The dynamics of these judgments are
typically modeled as a process of gradual growth. Activation, be it
latent or neural, grows gradually until some criterial value is
reached, and then a response is produced. This theme of gradual
growth is fundamental in many behavioral and neurological ac-
counts of perceptual decision making. Selected examples include
the models developed in Brown and Heathcote (2005), Hanes and
Shall (1996), Huk and Shadlen (2005), Morton (1969), Ratcliff
(1978), Reddi and Carpenter (2003), and Usher & McClelland
(2001). Perhaps the most popular gradual growth model is Rat-
cliff’s (1978) diffusion model. A simple version of the model is
shown in Figure 1.1 A sample path of activation is shown as the
jagged gray line. A response is produced when the path is absorbed
at the bound (denoted with a thick horizontal line). The parameters
of the model are the drift rate, or average rate of activation gain per
unit time (shown as an arrow), and the criterial bound. The drift
rate corresponds to the strength of the stimulus, with stronger
stimulation driving quicker growth (e.g., Ratcliff & Rouder, 1998).
Typically, a shift or offset is added to the absorption time to model

the effects of nondecision processes, such as encoding the stimulus
or executing the response (Laming, 1968).

Although gradual growth models are popular and appealing,
there are alternatives without recourse to growth. The one we
explore is shape invariance. Figure 2 depicts properties of shift,
scale, and shape in distributions. Shape refers to properties of
distributions that are indexed by moments higher than variance: for
example, skew and kurtosis. Many candidate response time (RT)
distributions may be parameterized with explicit shift, scale, and
shape parameters; examples include the lognormal, gamma, and
Weibull families. The principle of shape invariance is that al-
though shift and scale may vary across people, tasks, or conditions,
shape may not.

The power of shape invariance is seen by consideration of a formal
definition. Let T1, T2, . . . , TN be a set of theoretical RT distributions.
This set could be over conditions, people, or even condition-by-
person combinations. Shape invariance implies that Ti � �i � �iZ,
where Z is a canonical distribution that does not change across the set
and �i and �i are parameters that denote shift and scale, respectively,
for the ith distribution. The key constraint is that all RT distributions
in the set are shifted and scaled versions of the same canonical form.
Shape invariance, should it hold, is a striking regularity in data and an
appropriate target for theoretical explanation.

1 Activation x at time t is modeled as a Wiener diffusion process. The
partial differential equation describing the density of activation, f, is
�f(x, t)

�t
� ��

�f(x, t)

�t
� �2

�2f(x, t)

�x2 , where � and � are called the drift rate

and the coefficient of drift, respectively. For modeling perceptual judg-
ments, the activation x is assumed to be latent. Consequently, � serves as
the scale of activation and is set to 1.0 without any loss of generality.
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Shape invariance, although not identified as such, has been
integral to a number of perspectives. From a processing per-
spective, Logan (1992) and Ulrich and Miller (1993) noted that
shape invariance holds across some parallel-processing models.
Logan (1992), for example, posited that RT reflects the first
time when one of many competing parallel processes finishes.
Responses are speeded when there are more competing pro-
cesses. According to these models, the effect is in scale, such as
in the middle panel of Figure 2, rather than in shift or shape. An
alternative account of shape invariance is provided by Myerson
and colleagues (Myerson, Hale, Wagstaff, Poon, & Smith,
1990; Myerson, Hale, Zheng, Jenkins, & Widaman, 2003), who
advocate a generalized slowing view of the effects of cognitive
aging. According to Myerson and colleagues, RT is the sum of
several latent components. Aging proportionately lengthens
each of these components, and this proportionality results in
shape invariance. From a statistical and psychometric perspec-
tive, shape invariance is useful for measuring various aspects of
performance (Rouder, Lu, Speckman, Sun, & Jiang, 2005; Van
Breukelen, 2005). It serves as a more realistic assumption than

the variance homogeneity implicit in conventional analysis of
variance (ANOVA) and regression models.

Evidence for Gradual Growth and Shape Invariance

A number of behavioral lines of evidence support gradual
growth models. Several studies have shown that specific gradual
growth models, such as Ratcliff’s diffusion model or Brown and
Heathcote’s linear ballistic accumulator, can account for RT and
accuracy data across a number of tasks, age groups, and conditions
(e.g., Brown & Heathcote, 2005; Gomez, Ratcliff, & Perea, 2007;
Ratcliff, Gomez, & McKoon, 2004; Ratcliff & Rouder, 2000;
Spaniol, Voss, & Grady, 2008; Thapar, Ratcliff, & McKoon,
2003). Moreover, researchers have demonstrated selective influ-
ence in which manipulations hypothesized to affect only prespeci-
fied parameters indeed do so (e.g., Voss, Rothermund, & Voss,
2004). In sum, the evidence for various gradual growth models in
the literature is plentiful and varied.

Although shape invariance has not received the considerable
attention that gradual growth has, it too seems plausible. It has
long been noted that histograms of RT distributions seemingly
have a canonical shape characterized by unimodality and a long
right tail (Luce, 1986). On a more formal level, two natural
consequences of shape invariance tend to hold in the empirical
distributions. One consequence is that the standard deviation of RT
tends to increase linearly with the mean, and this property tends to
hold fairly robustly in data (Luce, 1986; Wagenmakers & Brown,
2007). The second natural consequence of shape invariance is that
quantile–quantile (QQ) plots of RT distributions are straight lines
with no curvature. Figure 3 shows empirical QQ plots from four
studies in which stimulus strength was manipulated. The lines,
which describe the points to high precision, are best-fitting linear
regression lines.

How can the evidence for gradual growth models and for shape
invariance be reconciled? Extant gradual growth models predict
shape changes in RT distributions across strength manipulations.
The shape changes implied by these models, however, are often
quite small and fairly subtle. For example, Ratcliff, Spieler, and
McKoon (2000) showed that the diffusion model can mimic the
linear QQ plots provided in Smith and Brewer (1995). One reason
the diffusion model mimics shape invariance is the use of across-
trial variability in addition to within-trial variability. The trajec-
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Figure 1. A one-bound diffusion process. The light gray jagged line
shows a sample activation path; the arrow denotes the drift rate.
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Figure 2. Effects of varying shift, scale, and shape parameters in a shift–scale–shape distribution family.
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tory of Figure 1 shows within-trial variability. Across-trial vari-
ability refers to variations in parameters (drift rate, bound, and
shift) across trials. The addition of across-trial variation has proved
necessary to account for fine details of the joint distributions of RT
and accuracy (Ratcliff & Rouder, 1998; Ratcliff, Van Zandt, &
McKoon, 1999). These additional across-trial variabilities in pri-
mary parameters tend to attenuate predicted shape differences
across conditions.

We find the gradual growth account of approximate shape
invariance to be unsatisfying. Shape invariance in distribution is a
simple principle that may be accounted for with two free param-
eters: shift and scale. The gradual growth account is far more
complex. First, it predicts only approximate rather than actual
shape invariance. Second, it does so with recourse to three primary
parameters (bound, rate of growth, shift) in conjunction with
across-trial variabilities in these parameters. In sum, although
gradual growth models may mimic shape invariance, they do so
through increased flexibility rather than through parsimony. In our
view, shape invariance, should it hold, serves as a foundational
empirical phenomenon suitable for direct and parsimonious expla-
nation.

Competitively Testing Gradual Growth
Versus Shape Invariance

Assessing shape invariance is difficult. For example, it is not
obvious how to statistically test the linearity of averaged quantiles
in the QQ plots of Figure 3. Rouder, Speckman, Steinley, Pratte,
and Morey (2010) provided a nonparametric bootstrap test of
shape invariance, but it is of low power and cannot differentiate
shape invariance from the subtle changes in shape implied by most
gradual growth models. The approach we take here is to construct
a parametric test between two alternative hypotheses: (a) Shape is
invariant across a strength manipulation versus (b) shape changes
with strength as predicted by the one-bound gradual growth model
of Figure 1. Both of these hypotheses are implemented in a
common statistical distributional family, the inverse Gaussian,
which is discussed subsequently.

The test is based on manipulating stimulus strength across
conditions. Participants were presented with Gabor patches with
orientation tilted from vertical (see Figure 4), and they judged
whether the tilt was leftward or rightward. Although rightward tilts
are not shown in Figure 4, they occurred with equal frequency in
the reported experiment. The magnitude of tilt, whether leftward or
rightward, was varied, with some patches having an obvious tilt
(e.g., Patch I in Figure 4) and other having a more subtle one (e.g.,
Patch II in Figure 4). The tilt-angle magnitude served as a strength
variable. In the reported experiments, tilt angle was randomly
varied across trials; hence, participants had no advanced knowl-
edge of the stimulus and could not vary their criterial settings with
stimulus strength. Therefore, in the gradual growth account, stim-
ulus strength affects drift rate but not bound. We term this property
bound invariance.

Bound invariance places constraints on RT distributions. As the
drift rate decreases, distributions not only increase in scale but
become more skewed. Figure 4 provides an example. Patch I is
more extreme in tilt and corresponds to a drift rate that is higher
than that for Patch II. The corresponding RT distributions are
shown in the right panel as Curves i and ii. Hence, Distributions i
and ii are bound invariant. They are not, however, shape invariant.
Distribution iii is shape invariant with Distribution i but not with
Distribution ii. The difference between Distributions ii and iii
shows the correlates of bound invariance and shape invariance,
respectively. This difference, although subtle, is discernible in the
experiment we report.

The key question is whether the data are better described as
bound invariant or, alternatively, shape invariant. The three-
parameter inverse Gaussian distribution is ideal for answering this
question. On the one hand, the inverse Gaussian distribution de-
scribes RT distributions from a one-bound diffusion process
(Chhikara & Folks, 1989). The probability density function of the
inverse Gaussian distribution is

f	t; �, �, 
� �



�2�
	t � ���3/ 2exp�� 

 � �	t � ���2

2	t � �� � ,

t � �; �, 
 � 0. (1)

Parameters �, �, and 
 denote the shift, drift rate, and bound,
respectively. On the other hand, the inverse Gaussian distribution
may be reparameterized in a shift–scale–shape form. Let �i and 
i

denote the drift rate and bound of the inverse Gaussian distribu-

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Strong−Condition Response Time (s)

W
ea

k−
C

on
di

tio
n 

R
es

po
ns

e 
T

im
e 

(s
)

●
●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

Contrast
Lexical Decision
Semantic Distance
Motion Coherence

Figure 3. Quantile– quantile plots from four experiments are straight
lines, consistent with shape invariance. The sequence labeled Contrast
is from Ratcliff and Rouder’s (1998) Experiment 1, in which partici-
pants judged whether a light or a dark square differed in brightness from
a gray background. In the strong and weak conditions, squares differed
markedly or subtly from the background, respectively. The sequence
labeled Lexical Decision is from Gomez, Ratcliff, and Perea (2007), in
which participants performed a lexical decision task. Words with
Kuœra–Francis frequencies between 1 and 6 and between 7 and 20
made up the weak and strong conditions, respectively. The sequence
labeled Semantic Distance is from Rouder, Lu, Speckman, Sun, and
Jiang (2005), in which participants judged whether digits were less than
or greater than 5. The digits 2 and 8 make up the strong condition; digits
4 and 6 make up the weak one. The sequence labeled Motion Coherence
is from Ratcliff and McKoon (2008, Figure 8) in which participants
identified the direction of coherent motion. High-coherent motion and
low-coherent motion (Conditions 6 and 1, respectively, in that article)
made up the strong and weak conditions, respectively. All points are
averaged quantiles (Jiang, Rouder, & Speckman, 2004) or Vincentiles
(Ratcliff, 1979). The lines are best-fitting linear regression lines.
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tion, respectively, for the ith tilt-angle condition. It is straightfor-
ward to show that the quantities

� i � 
i/�i, (2)

� i � 
i�i, (3)

are the scale and shape of the distribution, respectively.2 This
reparameterization provides the key to testing bound and shape
invariance. Bound invariance implies that 
i, the bound, is constant
across changes in tilt angle; that is, 
i � 
. Shape invariance, in
contrast, implies that �i, the shape parameter, is constant across
changes in tilt angle; that is, �i � �. Assessment of these invari-
ances is aided by noting that Equations 2 and 3 imply

log� i � log
i � log�i, (4)

log� i � log
i � log�i. (5)

Bound invariance occurs if log�i � �log�i � c0, where c0 �
2log
 is a constant across conditions.3 Hence, bound invariance
predicts that the relationship between log shape and log scale
follows a straight line with slope �1.0. Shape invariance, in
contrast, implies that log�i does not vary with log�i. Clearly, both
relationships cannot hold simultaneously.

The fact that both shape invariance and bound invariance can be
expressed as reparameterizations of the inverse Gaussian distribu-
tion greatly facilitates the comparison of the two. In analysis, we
let shape and scale be free parameters that may take on any values.
We simply assess whether the relationship between log� and log�
has a slope closer to �1 or 0. Had there been no common
distribution for bound and shape invariance, the comparison would
have been more difficult.

There are two significant limitations to this approach. The first
is the assumption that RT follows an inverse Gaussian distribution:
If the data deviate grossly from the inverse Gaussian distribution,
then the test is inappropriate. Hence, we assess how well the
inverse Gaussian distribution describes the data. The second lim-
itation of the current approach is that although the task is a
two-choice task, the model assumes only correct responses are
possible. Ordinarily, two-choice tasks are modeled with two-

bound diffusion processes (e.g., Ratcliff & Rouder, 1998). The
two-bound diffusion model, however, cannot be reparameterized
conveniently with scale and shape parameters and is, conse-
quently, not suitable for assessing shape invariance. Fortunately,
the two-bound diffusion model may be closely approximated by
the one-bound diffusion model in Figure 1 when task accuracy is
high, but not necessarily otherwise (Matzke & Wagenmakers,
2009). Hence, the usefulness of the inverse Gaussian model is
conditional on highly accurate performance. The following exper-
iment provides for large RT effects with high levels of accuracy.

Method

Participants

Fifty-eight students in an introductory psychology course at the
University of Missouri served as participants in exchange for
course credit.

Stimuli

Stimuli were the supposition of Gabor patches and pixelated
noise (see Figure 4). The Gabor patches were composed of 2-D
sinusoidal gratings with different tilt angles corresponding to dif-
ferent y-axis frequencies of �0.4°, �0.2°, and �0.15° per pixel.
The x-axis frequency was fixed at 5.7° per pixel. The resulting six
tilt angles were �4°, �2°, and �1.5°. These gratings were mod-

2 The density for a shift–scale–shape family may be expressed as

f(t; �, �, �) �
1

�
g(z; �), where z � (t � �)/� is a standardized score; g is a density

function; and �, �, and � are shift, scale, and shape parameters, respectively. To see
that the inverse Gaussian distribution follows a shift–scale–shape parameteri-
zation, substitute Equations 2 and 3 into Equation 1. The result is

f(t; �, �, �) �
1

�
g(z; �), where g(z; �) � ��

2�
z�3/2exp���(z � 1)2

2z �. Hence, �, �,

and � serve as shift, scale, and shape parameters, respectively.
3 Equations 4 and 5 show that the two parameterizations are 45° rota-

tions of each other.
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Figure 4. Stimuli and distributional predictions. Left: Patch I and Patch II have an obvious and a subtle
leftward tilt, respectively. Right: Distributional correlates of shape and bound invariance. Distributions i and ii
are the correlates of bound invariance; Distributions i and iii display shape invariance.
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ulated by a two-dimensional Gaussian filter that had a full width at
half maximum dispersion of 83 pixels in each direction. These
gratings were of high contrast with peak-to-peak amplitudes cor-
responding to approximately three quarters of the luminance range
of the CRT displays. The pixelated noise was of low power
(approximately one tenth that of the gratings) and was added to
avoid any aliasing of line segments. Consequently, the gratings
were clearly visible; the tilt angle, however, was subtle (especially
for the �1.5° tilts).

Design

The experiment was a 2 � 3 within-subject balanced factorial
design with tilt direction and tilt magnitudes serving as factors. All
combinations of factors occurred equally often across the experi-
ment for each participant.

Procedure

Each trial began with the presentation of noise. After a 1-s
foreperiod, the Gabor patch was superimposed on the noise. The
patch and noise were displayed until response. Participants judged
the orientation of the patch by depressing the z and / keys to
indicate left and right orientations, respectively. Auditory feedback
about the correctness of each judgment was provided by either a
high-pitched or a low-pitched tone for correct and error responses,
respectively. To elicit high accuracy, we made sure error responses
were followed by a 2-s delay in which the participants were
reminded to be accurate. Participants observed 9 blocks of 80 trials
each and took short breaks between blocks. The entire session
lasted about 45 min.

Results

Figure 5A shows the resulting RTs for correct responses as a
function of tilt angle and amount of practice. As can be seen,
participants improved in speed over the first third of the experi-
ment and were relatively stable thereafter. Hence, only data from
the later two thirds were retained for analysis. Additional trials

discarded include all errors (3%), all responses with RT longer
than 5 s (1%), trials following errors (3%; see Rabbit, 1966, for a
justification), and trials following breaks (1%). Resulting mean RT
as a function of condition is shown in Figure 5B. The magnitude
of tilt angle had a large 150-ms effect, F(2, 114) � 319.4, p � .05.
Leftward tilts were responded to more quickly than rightward tilts,
F(1, 57) � 26.4, p � .05, and the interaction between direction and
magnitude was significant, F(2, 114) � 8.9, p � .05. We interpret
these effects subsequently within the context of the models. Ac-
curacies were quite high, averaging .94, .97, and .99 for the 1.5°,
2°, and 4° tilts, respectively. Leftward tilts were responded to
slightly more accurately than were rightward tilts (.97 vs. .96,
respectively), indicating that quicker responses to leftward tilts
were not the result of a speed–accuracy trade-off.

The critical questions are about bound and shape invariance.
Our approach is to fit a general inverse Gaussian model in which
shape and scale are free to vary across participants and strength
levels. This approach is equivalent to allowing drift rate and bound
to vary across participants and strength levels. Consequently and
importantly, neither shape invariance nor bound invariance is
assumed.

The Appendix describes the details of the statistical model. As
mentioned previously, the analysis is conditional on the good fit of
the inverse Gaussian distribution. Figure 6A shows the adequacy
of the inverse Gaussian model. Plotted are observed values as a
function of predicted values for the 10th, 50th, and 90th percentiles
for each participant-by-angle combination. Overall, the model fits
well, certainly as well as other gradual growth models (cf. Ratcliff
& Smith, 2004). We note, however, that there is a slight underes-
timation of inordinately long RTs.

Figure 6B shows averaged estimates of log shape as a function
of log scale for the six tilt-angle conditions. The points order by
tilt-angle condition with decreasing scales for increasing tilt an-
gles. Log shape not only decreases with log scale, it does so in a
manner highly consistent with bound invariance. The dashed line
shows the relationship in which the bound is invariant at log
 �
�.085. The statistical significance of these trends was assessed by
submitting participant-by-condition parameter estimates to a
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repeated-measures ANOVA. Shape invariance does not hold
across the six conditions, F(5, 285) � 19.8, p � .05. In contrast to
shape invariance, bound invariance may not be rejected, F(5,
285) � 0.60, p � .7. Figure 6B also provides some evidence that
the slightly elevated error rate for the 1.5° condition is inconse-
quential. Even if this condition is ignored, the same decrease of log
shape is observed.

Figure 6B reveals an unforeseen result about the nature of bias.
Participants exhibit an overall bias in that they responded more
quickly and more accurately to leftward than rightward tilt angles.
This bias is manifest in the drift rates rather than in bounds. It is
better characterized as an encoding bias rather than as a response
bias (Link, 1992). Gradients were seemingly perceived as slightly
more counterclockwise in orientation than as they were displayed.

Conclusions

The observed bound invariance and the observed failure of
shape invariance provide clear conclusions. First, the data are
highly concordant with the simple one-bound gradual growth
model of Figure 1. Second, they are discordant with shape invari-
ance. This last point about the lack of shape invariance is condi-
tional on the inverse Gaussian model, although the inverse-
Gaussian model seems reasonable for these data (see Figure 6A).
This support for the gradual growth model complements previous
research that shows the applicability of the diffusion model to a
variety of tasks and further shows that diffusion model parameters
may be selectively influenced. In summary, the gradual growth
model is preferred even when compared with a flexible alternative
that makes highly similar RT predictions.

One limitation of the results is that the analyzed experiment taps
fairly low-level processes. Participants decided if the tilt of a
grating was leftward or rightward. Such a decision is mostly
perceptual and might be made without recourse to substantial
semantic or mnemonic processing. Given that diffusion models
have accounted for data in tasks with substantial mnemonic and
semantic demands such as recognition memory (Ratcliff, 1978;
Spaniol et al., 2008) and lexical decision (Ratcliff et al., 2004), it
seems plausible that our shape-dependency results may extend to

these domains as well. Likewise, it seems unlikely that shape
invariance may hold in more complex domains given that it does
not hold in simple perceptual ones.

Although shape invariance may not be an exact description of
underlying processing, it nonetheless may be useful in certain
contexts. Shape invariance may serve as an appropriate statistical
model for assessing the effects of covariates such as experimental
manipulations and group membership (Rouder et al., 2005;
Rouder, Tuerlinckx, Speckman, Lu, & Gomez, 2008; Van Breuke-
len, 2005). In such models, shift parameters correspond to residual
processes such as the execution of responses, and scale parameters
describe central decision-making processes. These models are
statistically tractable and far more realistic than linear (ANOVA)
models of RT. Because of their tractability, they may be more
useful than gradual growth models for analyses where there are
few observations, many conditions, or few error responses. Re-
searchers using shape invariance as a statistical tool should be
mindful that shape invariance holds only approximately, although
to a far greater degree than the equal-variance assumption in
conventional linear models.
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Figure 6. A. The inverse Gaussian model is well specified. Shown are predicted and observed select percentiles
for each participant by condition. B. Mean log shape (log�) as a function of mean log scale (log�). The dashed
line has a slope of �1, the value predicted by bound invariance. Error bars denote 95% within-subject confidence
intervals (Masson & Loftus, 2003). RT � response time.
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Appendix

Statistical Analysis

A mixture model was used to estimate inverse Gaussian scale
and shape parameters. Each observation was assumed to be from
one of two sources: (a) the process of interest, which is distributed
as an inverse Gaussian, or (b) an outlier distribution, which is
distributed as a continuous uniform on the interval 0–5 s (Dolan,
van der Maas, & Molenaar, 2002). The uniform allows for outliers
that are potentially faster as well as slower than the process of
interest. This property seems appropriate as there are observations
that are exceedingly slow and exceedingly fast.

Let yijkm denote the mth replicate for the ith participant observing
the jth tilt direction (left or right) and kth magnitude (i � 1, . . . , I,
where I denotes the number of participants; j � 1, 2; k � 1, 2, 3; and
m � 1, . . . , Mijk, where Mijk denotes the number of replicates). Let
zijkm be a latent indicator that takes a value 1 when yijkm is from the
process of interest and value 0 otherwise. Then,

yijkm�zijkm, �ij, �ijk, �ijk �
ind �Inverse Gaussian	�ij, �ijk, �ijk�, zijkm � 1,

Uniform(0, 5), zijkm � 0,

where

zijkm �
iid Bernoulli	��.

The inverse Gaussian distribution has a shift–scale–shape pa-
rameterization. Note that scale (�ijk) and shape (�ijk) are free to
vary across participants, tilt direction, and tilt magnitude without
constraint. Shift (�ij) varies across participants and tilt direction
but not across magnitude. Typically, shifts are not considered a
function of stimulus condition as they represent nondecision la-
tencies (see Ratcliff & Rouder, 1998). There is the concern,
however, that differences in dexterity across response hands could
affect the assessment of distributional shape. This difference may
be modeled by allowing for unique shift parameters for each
hand-by-participant combination. In the current analysis, which
includes only correct responses, left-hand responses arise only
from left tilt angles, and right-hand responses arise only from right
tilt angles. Therefore, differences in dexterity across response
hands may be accounted for by including a unique �ij for each
participant-by-angle-direction combination.

Analysis was performed with Bayesian Markov chain Monte
Carlo methods, and posterior means served as point estimates.
With such methods, priors are needed on all parameters. Priors
were chosen to be vague and convey only a minimal degree of
information. Priors on all �ij were flat (noninformative); priors on
all �ijk were lognormal with mean and variance on log(�ijk) of –1.2
and 1.0, respectively. This prior distribution is broad with substan-
tial mass from a few milliseconds to several seconds. Priors on all
�ijk were gamma with a shape of 2 and a rate of 0.3, and these have
substantial mass on reasonable shape values from 0.5 to 20. The
prior on �, the mixing probability, was flat on [0,1]. To test
whether the reported results are robust to different choices, we
reanalyzed the model with several different priors. Additionally,
we reanalyzed the model with priors placed on drift rate and bound

rather than on scale and shape. There is only a marginal effect of
prior specification on parameter estimates, indicating that priors do
not have undue influence on estimates.

One issue in analysis is convergence of samples of posterior
distributions. The Markov chains display a substantial degree of
autocorrelation. To ensure convergence, we ran chains for 500,000
iterations and thinned them by a multiple of 10. Figure A1 shows
a small part of a sample chain after thinning; autocorrelation is still
present, but its effects on posterior mean estimates are mitigated by
the large number of iterations.

Figure 6A shows the adequacy of the model. Although the
model fits very well for the vast majority of observations, there is
a small underestimation of very long responses. Given the coarse
nature of the mixture model, in which there is a single outlier
distribution across all individuals and angles, this small degree of
misspecification is not surprising. We have analyzed several other
mixture models with alternative specifications of outliers, includ-
ing a model with no outlier distribution. Although the choice of
outlier distribution affects the quality of the fits, it does not affect
much the assessment of shape versus bound invariance. In all
cases, bound invariance held and shape invariance was violated.
Hence, bound invariance appears to be a robust property of these
data.

Received December 31, 2009
Revision received May 27, 2010

Accepted May 28, 2010 �

Figure A1. Markov chain Monte Carlo outputs after thinning for param-
eter �20,1, one of the more slowly converging parameters. There are 50,000
values in the thinned chains, and the figure shows the values from 20,000
to 25,000.
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