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Visual working memory is often modeled as having a fixed number
of slots. We test this model by assessing the receiver operating
characteristics (ROC) of participants in a visual-working-memory
change-detection task. ROC plots yielded straight lines with a slope
of 1.0, a tell-tale characteristic of all-or-none mnemonic represen-
tations. Formal model assessment yielded evidence highly consis-
tent with a discrete fixed-capacity model of working memory for
this task.
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he study of the nature and capacity of visual working memory

(WM) is both timely (1) and controversial (2, 3). A popular
conceptualization is that visual WM consists of a fixed number of
discrete slots in which items or chunks are temporarily held (2, 4,
5). Nonetheless, there are dissenting viewpoints in which the
discreteness is taken as, at most, a convenient oversimplification (6,
7). In this article, we provide a rigorous test of the fixed-capacity
model for a visual WM task. Herein, we apply this test to items that
differ in color, although the test is suitable to examine the generality
of capacity limits across various materials.

We used a common version (8—-15) of the task popularized by
Luck and Vogel (4, 16) (see Fig. 14). At study, participants are
presented with an array of colored squares. At test, a single
square is presented; this square is either the same color as the
corresponding square in the study array (a “same trial”) or a
novel color (a “change trial”). Participants simply decide
whether the test square is the same as or different from the
corresponding studied square. In this task, where the color of
each square is unique and the colors are well separated, capacity
is the number of squares (objects) that may be held in visual WM.
This object-based view of capacity is supported by previous
research (4), in which performance does not vary with the
number of manipulated features per object.

Previous demonstrations of fixed capacity have relied on
plotting capacity estimates as a function of the number of
to-be-remembered items. Fixed capacity is claimed because
capacity estimates tend to asymptote at three to four items for
array sizes of four to six items. This approach, however, is not the
most rigorous for this model. There are three weaknesses in
previous demonstrations: (i) The asymptote of the capacity
estimated may be mimicked by models without recourse to fixed
capacity; (if) previous demonstrations are made with aggregate
data, and an asymptote in the group aggregate does not neces-
sarily imply asymptotes in all or any individuals; and (iif) the
stability of these asymptotes has not been formally assessed.
These weaknesses motivate a more constrained test, to be
presented subsequently.

The Fixed-Capacity Almost-ldeal Observer Model. We define the
fixed-capacity ideal observer as one who maximizes the proba-
bility of a correct response given the constraint that visual WM
is discrete and limited in the number of items that may be held.
Here, we derive the ideal observer model and show that it is
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closely related to Cowan’s formula (2, 17) for visual WM
capacity. Cowan’s formula has been applied in a growing number
of studies (9, 18, 19), often in combination with electrophysio-
logical measures (20, 21) or functional neuroimaging (12-14).
The measures seem to converge on a human capacity of approx-
imately four simple objects in WM. However, all of this work is
tenuous inasmuch as the theoretical assumptions underlying the
model have not been examined rigorously. Later in this section,
we relax an assumption of the model to approximate ordinary
nonideal human decision processes (almost-ideal observer
model) and, in Results, we include effects of inattention to the
display.

The ideal observer conditions her or his response on whether
the item is in memory. If so, the ideal observer responds
accordingly, and performance is perfect. The probability that a
cued square is in memory is a function of capacity, denoted k,
and the number of squares in the study array (array size),
denoted M. If capacity is as great as the number of squares, all
may be held in memory. If capacity is smaller, however, only k
may be held, and the probability of any one square being in
memory is k/M. Combining these facts yields:

k
Pr(cued element in memory)=min (1, M) .

If the test item is out of memory, the ideal observer responds
“change” only if a change is more likely a priori. Let g denote the
probability of a change response when the item is out of memory,
and let 7 be the probability of a change trial. Then,

0 7<.5,
g=b m=.5,
1 =>.5.

The parameter b is a bias that holds if change and same trials are
equally likely (i.e., = = 0.5) and does not affect the overall
probability of a correct answer. The above equation is valid when
the probability that the tested item changed () is known. It is
not valid for other paradigms in which any one of several items
presented at test may have changed (e.g., ref. 22).

Model predictions are easily derived for hit and false alarm
rates, the probability of a “change” response for change and
same trials, respectively. Let these rates be denoted by 4 and f,
respectively. A hit occurs if an item is remembered, or failing
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Experimental paradigm and fixed-capacity model predictions. (A) Structure of a trial in the experiment. The squares and masks in the experiment varied

in color rather than gray scale. (B) Selective influence predictions for ROC plots. The predicted points are constrained to be at the intersections of equal-sensitivity

and equal-bias lines.

this, a change is guessed. A false alarm comes about from
guessing when the item is not remembered:

pmin(ieg) (1= mf 1) e

= min M + — min M g, [1]
. k

f=1{1-min 1’M g. [2]

An equation for capacity may be derived by subtracting the false
alarm rate from the hit rate and solving for k:

k=M —f), k=M. [3]

Eq. 3 is the same as Cowan’s formula (2, 17), except that Eq. 3
is properly qualified for k= M.

The ideal observer model predicts a degree of determinism
that seems unrealistic. When an item is not in memory, the
model predicts response rates of 0.0 or 1.0, depending on
whether  is less than or greater than 1/2, respectively. This
deterministic rule is in conflict with the well known phenomenon
of probability matching (23, 24), in which participants’ response
rates are more intermediate than these extremes. Our goal is to
test WM models rather than models of response strategies.
Therefore, we relax the model by allowing g to be any monotonic
function of . Although g is free to vary across conditions with
different probabilities 7, it does not depend on the array size.
Because this relaxation allows for suboptimalities such as prob-
ability matching, the model may be characterized as a fixed-
capacity almost-ideal observer. For brevity, we term it the
fixed-capacity model. In fact, as will be shown, the model will
need further generalization to fit data.

Testing the Fixed-Capacity Model. The goal of this article is to
provide a selective influence test (25) of the fixed-capacity model
for a visual WM task. We factorially manipulated the array size
(arrays of two, five, and eight squares) and the probability that
there was a change in the array (probabilities of 0.3, 0.5, and 0.7).
According to the model, capacity estimates should not vary with
either manipulation. The guessing parameter g should vary with
the probability of change () and not with array size. Consid-
eration of selective influence allows for a more competitive and
rigorous test of the fixed capacity model than previously
attempted.

We express these constraints as follows. Let M;, i = 1,...,1
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and mj, j = 1,..., J denote the levels of the array-size and
change-probability factors, respectively. Let 1 and fjj denote the
hit and false alarm rates for ith array size and jth change-
probability condition, respectively:

hy=d; + (1 —d)g, [4]
i =1 —dyg, [5]

where d; = min(k/M;, 1). The model is equivalent to the double
high-threshold model (26). This model makes well specified
predictions for how receiver operating characteristics (ROCs)
change as a function of array size and the change-probability
manipulation. The ROCs for a fixed array size and varying
change probability trace a straight line with a slope of 1.0 and an
intercept min(k/M;, 1). Fig. 1B shows these predicted equal-set-
size ROC lines (solid lines) for the case where capacity k = 3 and
M = (2, 5, 8). The ROCs for fixed-change probability and
varying array size also trace a straight line with a slope of 1—1/g
and an intercept of 1.0. The dashed lines show these equal-bias
ROC lines for g = (0.25, 0.5, 0.75). These constraints on
equal-set-size and equal-bias ROC curves form a strong test of
the fixed-capacity model not easily mimicked by other models.

Signal-Detection Alternatives. We also compared the fit of the
fixed-capacity model to a signal-detection model of WM (7). In
the signal-detection model, items are neither in nor out of
memory. Instead, they have variable strength or familiarity (27).
As with the development of the fixed-capacity model, we relied
on an ideal-observer framework as a guide and, consequently,
adopted the likelihood-ratio version of the signal-detection
model (28). The model is described as follows: If the test square
is the same, then its strength is distributed as a standard normal;
if it has changed, then its strength is distributed as a normal with
mean and variance as free parameters (denoted d' and o2,
respectively). The participant observes a strength, x, from the
test square and calculates the likelihood ratio of this strength
under these two hypotheses:
=5
¢ o

o)

where ¢ is the density of the standard normal. The participant
responds “change” or “same” if the likelihood ratio is above or

LR(x) =

Rouder et al.
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Fig.2. Results. (A) ROCresults (2D error bars) and predictions (lines and small points) from the five-parameter fixed-capacity model. Error bars denote standard
errors of means in each measure. (B) Scatter plot of capacity in the eight-square arrays as a function of that in the five-square arrays. Filled points indicate
participants for whom fixed capacity may not be rejected in favor of variable capacity. Open points are exceptions; see text.

below a criterion, respectively. When parameterized in terms of
likelihood ratios, the model has a natural selective-influence
prediction: (i) set size should affect only the memory strength
parameter, d’, and not the criterion; and (if) change probability
should affect only the criterion and not the memory strength
parameter. A seven-parameter selective-influence model is con-
structed with three d' parameters (one for each set size), three
criteria (one for each change probability), and 2. A simpler
six-parameter version is constructed by assuming equal variance
in mnemonic strength (i.e., 0> = 1). Derivations for this model
are provided as supporting information (SI).

Results

Averaged hit and false alarm rates are shown in Fig. 24 as
two-dimensional error bars. These points fall at the vertices of
straight lines. Moreover, the points lie very close to an isosen-
sitivity line of slope 1.0, as predicted by the fixed-capacity theory.
The fixed-capacity model may be formally fit by assuming that the
frequencies of hits and false alarms, denoted Hj; and Fj;, respec-
tively, are distributed as conditionally independent binomials:

Hj; " Binomial(h;, N),

F; inf Binomial(f;, N,(«}')),
where Nl(j") and N,(f) are the number of change and same trials,
respectively, for the ijth condition. For the experiment with three
levels of change probability (J/ = 3), there are four parameters:
k, g1, g2, and g3. Estimation is performed by maximizing likeli-
hood (29), and goodness of fit is assessed by comparing the
likelihood of the model to that of a vacuous binomial model in
which there are no constraints on £;; and f;;. For the experiment,
the total number of parameters in the vacuous model is I X J X
2 = 18. The substantive model can be tested against the vacuous
model with a log-likelihood test statistic (ref. 30) (G?). Given the
large number of trials collected per individual, the model may be
fit to individual rather than aggregated data.

The four-parameter fixed-capacity model fits poorly for 16 of
23 participants, as indicated by G? fit statistics that correspond
to P values <0.05 [G?(14)>23.68]. The reason for these poor fits
is both easy to diagnose and of secondary importance. One facet
of the data is that accuracy with two squares at study is near but
not at ceiling. Accuracy averaged 0.945 with none of the 23
participants achieving perfect performance. Any error in the
two-square condition implies that capacity for all set sizes is
<2.0. The data from the higher set sizes, however, are compat-
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ible with higher-capacity estimates, which leads to poor fits of the
fixed-capacity model.

Adding Attention. It seems plausible that below-ceiling perfor-
mance with two squares may reflect an occasional lapse of
attention. The fixed-capacity model, unfortunately, is not at all
robust to this misspecification. For example, even for a person
with a very high true capacity, the presence of a single error in
the two-item condition will result in no likelihood for k£ =2. This
lack of robustness can easily be modified by assuming that
performance on each trial is a mixture of attentive and inatten-
tive states. When the participant is attentive, performance is
governed by the fixed-capacity model. When the participant is
inattentive, the hit and false alarm rate probabilities are gov-
erned by the guessing parameters. The following five-parameter
model reflects this role of attention:

hij=a(d; + (1 — d)g) + (1 - a)g;, 161
fi=a(l —d)g + (1 —ag, 171

where a denotes the probability that attention is engaged on a
trial. This model also predicts straight-line ROCs with a slope of
1.0. Decreases in a lower the intercept of the ROC line. Thus,
the five-parameter model is still highly falsifiable in the current
experiment.

The addition of an attention parameter represents a type of
trial-to-trial variability in the underlying process. In this case, the
variability is coarse, varying between full attention and no
attention. In a more fine-grained view, attention may vary across
several levels. The experimental paradigm and subsequent data,
however, do not provide sufficient precision to adjudicate be-
tween the all-or-none approach to trial-by-trial variability and a
more fine-grained view. The current approach is simple and
tractable and provides a parsimonious account of the data.

The five-parameter model was fit to each individual by
maximizing likelihood. Overall capacity was at 3.35 items, and
participants paid attention on 88% of trials. Guessing rates were
g = (0.47, 0.64, 0.79) for the base rates of = = (0.3, 0.5, 0.7),
respectively. These guessing rates indicate a biased and proba-
bilistic response strategy when items were out of memory and are
approximately concordant with previous probability matching
results (23, 24).

The model fit sufficiently well for 20 of the 23 participants, as
indicated by G? fit statistics that correspond to P values greater
than the 0.05 criterion [G?(13)<22.36]. Individualized
maximum-likelihood estimates of model parameters are used to
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Table 1. Model-selection statistics

Discrete capacity

Signal detection

Full attention,

Fixed capacity,

four five Variable capacity, Equal variance, Unequal variance,
Model-selection statistic parameters parameters six parameters six parameters seven parameters
Akaike Information Criterion 10,304.0 9,774.3* 9,775.8 9,791.5 9,796.8
Bayesian Information Criterion 10,674.3 10,237.3* 10,331.4 10,3471 10,444.9
Normalized Maximum Likelihood 10,505.3 10,025.9* 10,077.7 10,093.4 10,149.0

*Indicates lowest value (best fit) across models.

derive individualized ROC predictions for each participant. The
average of these predictions is also shown in Fig. 24 as the
smaller points connected by dotted lines. As can be seen,
the averaged predictions are within the standard errors of
averaged data. That is, the five-parameter fixed-capacity model
does an excellent job of accounting for the selective-influence
manipulations.

Fixed vs. Variable Capacity. To test the fixed-capacity assumption
more critically, we contrasted it to a six-parameter variable-capacity
model with separate capacities for each array size. This model had
six parameters: three capacities and three guessing parameters.
The five-parameter model can be rejected in favor of this six-
parameter alternative for 4 of the 23 participants [G?(1)>3.84]. The
nature of these few constant-capacity violations may be seen in the
scatter plots of capacity estimates in Fig. 2B for the five- and
eight-square arrays. Had capacity been exactly the same across
array sizes, then the points would lie on the diagonal. The open
circles indicate participants for whom capacity differs between the
five- and eight-square arrays. The triangle indicates a participant
who also violates fixed capacity; in this case, the participant had a
capacity of 1.8 for two-square arrays but a capacity of 1.15 for five-
and eight-square arrays. Overall, however, there is no apparent
trend away from the diagonal; that is, the distribution of capacities
across individuals does not appear to vary across the array size
conditions. This fact serves as supporting evidence for the fixed-
capacity model.

Even though the fixed-capacity assumption holds across a
majority of participants, it does fail for a few. For a few
participants, capacity decreases markedly with increasing array
size. We suspect these participants may have been intimidated by
the larger arrays and failed to encode much of them. Only one
participant showed substantially increasing capacity across all
three set sizes; perhaps this participant tried harder to encode
the study array when more items were presented (31). In sum,
fixed capacity is the norm, although subtle individual response
characteristics, which seem orthogonal to the process of interest,
are observable, too.

A Comparison to Signal Detection. We also benchmarked the
five-parameter fixed-capacity model against the signal-detection
models. The six-parameter (equal variance) and seven-
parameter (unequal variance) signal detection models fit well
compared with the vacuous model for 19 and 20 of 23 partici-
pants, respectively. Whereas the signal-detection and discrete-
capacity models are not nested, model comparisons are made
with the following three model-selection statistics: Akaike in-
formation criterion (32), Bayesian information criterion (33),
and an asymptotic approximation to normalized maximum
likelihood (34, 35). We computed omnibus model selection
statistics by computing the total likelihood of all parameters. For

SThe seven-parameter model with a separate-capacity parameter for each array-size con-
dition and an attention parameter is not identifiable.
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these three model-selection statistics, lower values indicate
better fit. As shown in Table 1, the methods provide for
converging results: the fixed capacity model fits best followed by
the variable-capacity discrete-model and signal-detection mod-
els. As a final check of these model-selection results, we con-
structed bootstrapped sampling distributions (36) of the differ-
ence in deviance between the five-parameter discrete-capacity
model and the six-parameter signal-detection model. Two such
distributions were constructed, each assuming that one of the
models being compared was true. These two distributions were
well separated (z = 4.9), and the observed difference in deviance
favored the fixed-capacity model.

Discussion

We have provided strong experimental support for a fixed-
capacity model of visual WM in a task in which participants are
asked to remember squares of various colors. Observed ROC
functions have slopes near 1.0, and the five-parameter fixed-
capacity model fits well when compared with a vacuous binomial
model, a variable-capacity discrete model, and a variable-
capacity signal-detection alternative. Perhaps the greatest ad-
vantage of the fixed-capacity model is its simplicity; it explains
the extant data with far more parsimony than variable-capacity
competitors. The paradigm and model are therefore well suited
for exploring more advanced aspects of human visual WM, such
as the role of chunking (5).

Although the fixed-capacity model fits well overall, there are
violations in some participants. We suspect these may reflect
idiosyncratic response characteristics, for example, being intim-
idated by large array sizes. Researchers need be aware of these
possibilities, especially when attempting individual-level capacity
estimation.

Software for fitting the fixed-capacity model across several
array sizes is available at web.missouri.edu/~umcaspsychpcl.

Methods

Participants. Twenty-three students from an introductory psychology class at
the University of Missouri, Columbia, served as participants.

Design. Change probability (w = 0.3,0.5,0.7) and array size (M = 2,5, 8) were
manipulated in a within-participant factorial design. Change probability was
held constant for blocks of 60 trials, whereas array size varied from trial to trial.
The dependent variable of interest was the number of hits and false alarms in
each condition.

Stimuli. Study arrays were squares whose colors were sampled without re-
placement from 10 colors (black, white, red, blue, green, yellow, orange, cyan,
purple, dark-blue-green). Squares were randomly positioned on the screen as
described previously (17). Patterned masks consisted of identical multicolored
squares as in Fig. 1A. Stimuli were presented on 17’ cathode ray tube
monitors (640 by 480 pixels, 120-Hz refresh).

Procedure. The structure of a trial is shown in Fig. 1A. Participants depressed
one of two keys on a keyboard to indicate whether the test square was the
same as or different from the corresponding square in the study array. The
experiment was composed of nine blocks of 60 trials each, for a total of 540
trials. To make the change-probability manipulation salient from the outset of

Rouder et al.
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a block, participants were first shown a pie chart of the change probability.
The change probability was also presented, as a percentage, before every trial.
The session took ~45 min to complete.

Our experimental procedure had three features that may be necessary to
isolate WM capacity. The first feature is that only a single square was pre-
sented at test. In a separate pilot experiment, we presented all squares at test
and cued a specific target square by encircling it. In this case, there was
evidence that capacity was not constant but rose with increasing array size. We
attribute this phenomenon to the use of nontested squares as contextual cues,
possibly allowing chunking or grouping of squares (15). Participants may
quickly learn that squares can be stored and successfully retrieved as a group.
The presentation of asingle square at test may lessen the benefit of grouping.
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SI Text

The purpose of this supplement is to present the equations for
an unequal-variance signal detection model in which response
choice is determined from the likelihood ratio of mnemonic
strengths. Let X denote the mnemonic strength of the stimulus.
The distribution of X is

X ~ Normal(0,1), for noise trials,
X ~ Normal(d,do?), for signal trials.

A signal response is given if
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where ¢ is the probability density function of the standard
normal distribution and B is the criterion on the likelihood ratio.
Taking logarithms yields the following condition for a signal

response:

og o 792 2>0g[3. [1]

We consider first the case that 02 = 1. Condition 1 reduces to

X-d? X
-5+ >logB,

which implies
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This condition directly leads to hit and false alarm rates:
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where @ is the cumulative distribution function of the standard
normal distribution.
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Next, consider the case o? > 1. The following are derivations of
the hit and false alarm rates for this case, which are denoted 4 .
and f, respectively. After completing the square, Condition 1
may be reexpressed as

d \? 20° d?
X_1—0'2 >0_2_1 10gB+10g0+m.

Whereas X is normally distributed, the distribution on the
left-hand side of the above inequality is a noncentral x? distri-
bution with a single degree of freedom [Johnson NL, Kotz S,
Balakrishnan N (1995) Continuous Univariate Distributions
(Wiley, New York), Vol II]. Let Fi(x;A) denote the cumulative
distribution function of a noncentral x> with noncentrality

parameter A evaluated at x. Let 6y = 5 and let &
— o
202 | i d?
o2 1 ogp + oga+2(0_2_]).
Then, the false alarm rate is
fr=1-Fi(&; 6)). [4]

The hit rate is computed by noting that for signal trials X =
oZ+d, where Z is distributed as a standard normal. Let 6, =

d _ do &
P 0, = R and let &, = — Then,

he=1-F(&; 92) [5]

The case for 0?<1 is solved analogously. Hit and false alarm
rates are denoted by 4 and f- and are given by

ho=1-hy, [6]
fo=1-1.. [7]
10f 1


http://www.pnas.org/cgi/content/short/0711295105

