
Bayesian Hierarchical Models 1

Running head: BAYESIAN HIERARCHICAL MODELS

Bayesian Hierarchical Models

Jeffrey N. Rouder

University of Missouri

Richard D. Morey

University of Groningen

Michael S. Pratte

Vanderbilt University



Bayesian Hierarchical Models 2

Bayesian Hierarchical Models

Introduction: The need for hierarchical models

Those of us who study human cognition have no easy task. We try to understand

how people functionally represent and processes information in performing cognitive

activities such as vision, perception, memory, language, and decision making. Fortunately,

experimental psychology has a rich theoretical tradition, and there is no shortage of

insightful theoretical proposals. Also, it has a rich experimental tradition with a multitude

of experimental techniques for isolating purported processes. What it lacks, however, is a

rich statistical tradition to link theory to data. At the heart of the field is the difficult

task of trying to use data from experiments to inform theory, that is, to understand

accurately the relationships within the data and how they provide evidence for or against

various theoretical positions.

The difficulty in linking data to theory can be seen in a classic example from Estes

(1956). Estes considered two different theories of learning: one in which learning was

gradual and another where learning happened all at once. These two accounts are shown

in Figure 1A. Because these accounts are so different, adjudicating between them should

be trivial: one simply examines the data for either a step function or a gradual change.

Yet, in many cases, this task is surprisingly difficult. To see this difficulty, consider the

data of Ritter and Reder (1992), who studied the speed up in response times from

repeated practice of a mathematics tasks. The data are shown in Figure 1B, and the grey

lines show the data from individuals. These individual data are highly variable making it

impossible to spot trends. A first-order approach is to simply take the means across

individuals at different levels of practice, and these means (red points) decrease gradually,

seemingly providing support for the gradual theory of learning. Estes, however, noted that
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this pattern does not necessarily imply that learning is gradual. Instead, learning might

be all-at-once, but the time at which different individuals transition may be different.

Figure 1C shows an example; for demonstration purposes, hypothetical data are shown

without noise. If data are generated from the all-at-once model and there is variation in

this transition time, then the mean will reflect the proportion of individuals in the

unlearned state at a given level of practice. This proportion may decrease gradually, and

consequently, the mean may decrease gradually even if every participant has a sharp

transition from an unlearned state to a learned one. It is difficult to know whether the

pattern of the means reflects a signature of cognitive processing or a signature of

between-individual variation.

There are three critical elements in Estes’ example: First, individuals’ data are

highly noisy, and this degree of noise necessitates combining data across people. Second,

there is variability across individuals. For example, in the all-at-once model, people differ

in their transition times. Finally, the theories themselves are nonlinear1, and the

all-at-once model in particular has a large degree of nonlinearity. It is the combination of

these three factors—substantial variability within and across individuals that is analyzed

with nonlinear models—that makes linking data to theory difficult. Unfortunately, the

three elements that led to the difficulties in Estes’ example are nearly ubiquitous in

experimental psychology. Often data are too noisy to draw conclusions from consideration

of single individuals; there is substantial variability across participants; and realistic

models of cognition are nonlinear. Note that the problem of nuisance variation is not

limited to individuals. In memory and language studies, for instance, there is nuisance

variation across items. For instance, in the learning example, it is reasonable to expect

that if the all-at-once model held, the time to transition across different problems (items)

would vary as well.

Several psychologists have noted that drawing conclusions from aggregated data
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may be tenuous. Estes’ example in learning has been expanded upon by Haider & Frensch

(2002), Heathcote, Brown, & Mewhort (2000), Myung, Kim, & Pitt (2000), and Rickard

(2004). The worry about aggregation over individuals has also been expressed in the

context of multidimensional scaling (Ashby, Maddox, & Lee, 1994), and the worry about

aggregating over both individuals and items has been expressed in linguistics (Baayen,

Tweedie, & Schreuder, 2002) and recognition memory (Rouder, Lu, et al., 2007; Pratte,

Rouder, & Morey, 2010). Although the dangers of aggregation are widely known,

researchers still routinely aggregate. For example, in studies of recognition memory, it is

routine to aggregate data across individuals and items before fitting models. Even

experienced researchers who fit sophisticated models to individuals routinely aggregate

across some source of nuisance variation, typically items. The reason that researchers

aggregate is simple—they do not know what else to do. Consider recognition memory

tasks, where aggregation across items or individuals is seemingly necessary to form hit and

false alarm rates. Without aggregation, the data for each item-by-individual combination

is an unreplicated, dichotomous event. Our experience is that researchers would prefer to

avoid aggregating data if alternatives are available.

In this chapter we present such an alternative: hierarchical modeling. In a

hierarchical model, variability from the process of interest, as well as from nuisance sources

such as from individuals and from items, are modeled simultaneously. The input to these

models is the raw, unaggregated data, and the outputs are process-parameter estimates

across individuals and items. In this regard, not only can the behavior of these process

estimates be studied across conditions, but across individuals and items as well, and this

later activity provides a process-model informed study of individual (and item) differences.

Hence, hierarchical models turn a problem, how to account for nuisance variation that

cloud our view of process, into a strength. Hierarchical models provide both a clearer view

of process and a means of exploring how these processes vary across populations of



Bayesian Hierarchical Models 5

individuals or items. Not surprisingly, hierarchical linear models, models that extend

ANOVA and regression to account for multiple sources of variance, are common in many

areas of psychology as well as across the social sciences (Raudenbush & Bryk, 2002).

Although hierarchical linear models are suitable in several domains, they rarely

make good models of psychological process. Instead, models that account for

psychological processes are typically nonlinear. The appropriate extensions for these cases

are hierarchical nonlinear models. It is difficult, however, to analyze hierarchical nonlinear

models in conventional frameworks. As a result, the field has been moving toward

Bayesian hierarchical models because hierarchical models, including hierarchical nonlinear

models, are far more conveniently and straightforwardly analyzed in the Bayesian

framework than in conventional ones. It is for this reason that there has been much recent

development of Bayesian hierarchical models in the mathematical psychology community,

the psychological community most concerned with developing models of psychological

process. Recent examples of applications in psychologically substantive domains include

Anders & Batchelder (2012); Averell & Heathcote (2011); Karabatsos & Batchelder

(2003); Kemp, Perfors, & Tenenbaum (2007); Lee (2006); Farrell & Ludwig (2008);

Merkle, Smithson, & Verkuilen (2011); Rouder, Morey, Cowan, & Pfaltz (2004); Rouder,

Tuerlinckx, Speckman, Lu, & Gomez (2008); Vandekerckhove, Verheyen, & Tuerlinckx

(2010) and Zeigenfuse & Lee (2010). Tutorial articles and chapters covering hierarchical

cognitive process models are becoming numerous as well (e.g., Busemeyer & Diederich,

2009; Kruschke, 2011; Lee & Wagenmakers, 2013; Rouder & Lu, 2005; Shiffrin, Lee, Kim,

& Wagenmakers, 2008), and there is a special issue of the Journal of Mathematical

Psychology (January 2011, Vol 55:1) devoted to the topic.

In the next section, we cover the basics of Bayesian probability. Included is a

comparison of the basic tenets of frequentist and Bayesian probability, examples of using

data to update prior beliefs, and an introduction to Markov chain Monte Carlo sampling.
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In Section 3, we show that the specification and analysis of hierarchical models is simple

and natural with the Bayesian approach, and in Section 4 we provide a brief discussion of

model comparison. Section 5 comprises our first example, and it is in the assessment of

subliminal priming. Subliminal priming occurs when an undetectable stimulus nonetheless

affects subsequent behavior. The methodological difficulty in establishing subliminal

priming is proving that a set of participants cannot detect a stimulus at levels above

chance. We show how previous approaches are woefully inadequate and demonstrate how

a hierarchical approach provides a possible solution. We provide a second example of

hierarchical modeling in Section 6. The example is from recognition memory, and shows

how the estimation of parameters in Yonelinas’ dual process model (Yonelinas, 1994) may

be contaminated by aggregation bias. We develop a hierarchical model for

uncontaminated assessment of the number of processes mediating recognition memory.

Finally, in Section 7 we provide some advice on choosing computer packages and receiving

training to perform Bayesian hierarchical modeling.

Bayesian Basics

In this paper we adopt a Bayesian rather than a conventional frequentist framework

for analysis. One reason is pragmatic—the development of Bayesian hierarchical models is

straightforward. Analysis of all Bayesian models, whether hierarchical or not, follows a

common path. Bayesian techniques transfer seamlessly across different domains and

models, providing a compact, unified approach to analysis. Because the Bayesian

approach is unified, models that might be intractable in frequentist approaches become

feasible with the Bayesian approach. The second reason we advocate Bayesian analysis is

on philosophical grounds. The foundational tenets of Bayesian probability are clear,

simple, appealing, and intellectually rigorous. In this section we review frequentist and

Bayesian conceptualizations of probability. More detailed presentations may be found in
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Bayesian textbooks such as Gelman, Shor, Bafumi, & Park (2007) and Jackman (2009).

Frequentist and Bayesian Conceptualizations of Probability

The frequentist conceptualization of probability is grounded in the Law of Large

Numbers. Consider an event that may happen or not, and let Y be the number of

occurrences out of N opportunities. The probability of an event is defined as the

proportion when the number of opportunities is arbitrarily large; i.e.,

p = lim
N→∞

Y

N
.

In this formulation, we may think of the probability as a physical property of the event.

Consider, for example, the probability that a given coin results in a heads when flipped.

This probability may be thought of as a physical property much like the coin’s weight or

chemical composition. And much like weight and chemical composition, the probability

has an objective truth value even if we cannot measure it to arbitrary precision.

In both frequentist and Bayesian paradigms, useful models contain unknown

parameters that must be estimated from data. For instance, if a participant performs N

experimental trials on a task, we might model the resultant frequency of correct

performance, Y , as a binomial random variable:

Y ∼ Binomial(p,N),

where p serves as a parameter and denotes the probability of a correct response on a trial.

Another simple, ubiquitous model is the normal. For example, Y might denote the mean

response time of a participant in a task and be modeled as

Y ∼ Normal(µ, σ2),

where µ and σ2 serve as free parameters that denote the mean and variance of the

distribution of people’s mean response times. Although it is well known that response
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times are not normals (Luce, 1986), the normal is a reasonable model of the distribution

of mean RT across people. Consequently, the normal model is often useful for analyzing

changes in mean RT as a function of experimental conditions or other covariates.

In the frequentist conceptualization, parameters are unknown fixed values which, in

turn, are estimated from data. Because frequentist probability stresses the large-sample

limit, the approach does not provide strict guidance on estimating parameters in finite

samples sizes. Consequently, there are multiple approaches to estimation including finding

estimates that maximize the likelihood (ML) or, alternatively, finding estimates that

minimize squared error between predicted and observed data points (LS). These methods

are not equivalent, and they may lead to different estimates in certain circumstances. For

example, the ML estimator of σ2 in the normal model is σ̂2 =
∑

(yi − ȳ)2/N while the LS

estimator is σ̂2 =
∑

(yi − ȳ)2/(N − 1). For frequentists, a minimal measure of

acceptability of an estimator is its large-sample behavior. Principled estimators are

consistent: they converge to true values in the large-sample limit. Both the ML and LS

estimators of σ2 are consistent because they converge to the true value as N →∞.

The Bayesian conceptualization of probability differs substantially from the

frequentist one. Probabilities are statements of subjective belief held by observers about

the occurrences of events. In the Bayesian formulation, probabilities describe the analyst’s

belief rather than a physical property of the system under study. Analysts may express

their beliefs compactly as distributions. Figure 2A shows the beliefs of three analysts

about a certain coin, or more specifically about p, the probability that a flip of a coin will

result in heads rather than tails. Analyst I believes that all values of p are equally likely.

This belief is shown by the solid flat line. Analyst II believes heads is more likely than

tails, and this belief is shown by the dotted line. Analyst III believes not only that tails

are more likely than heads, but that there is no chance whatsoever that the coin favors

heads. This belief is shown by the dashed line. These beliefs are called prior beliefs,
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because they are expressed before observing the data. After expressing these prior beliefs,

the three analysts together flip the coin repeatedly and observe 8 heads in 12 flips. The

key tenet of Bayesian probability is that beliefs may be updated rationally in

light of data. To do so, one applies Bayes’ Rule, which is discussed subsequently. The

rationally updated belief distributions, called the posterior beliefs, are shown in Figure 2B.

There are three posterior distributions, one for each analyst. There are a few noteworthy

points: First, the beliefs of all three analysts have been narrowed by the data; in

particular, for Analyst I, the beliefs have updated from a flat distribution to one that is

centered near the proportion of heads and with narrowed variance. Second, even though

the prior beliefs of Analysts I and Analyst II diverged markedly, the posterior beliefs are

quite similar. Third, Analyst III had ruled out certain values, all those for p > .50 a

priori. Indeed, because these have been ruled out, no result can make them probable, and

the posterior has no density for p > .50.

In summary, Bayesian probability does not prescribe what beliefs analysts should

hold. Instead, the emphasis is on how these beliefs should be updated in light of data.

Posterior beliefs are still subjective even though they reflect data. For Bayesians,

probabilities remain a construct of the observer rather than an objective property of the

system, and this property holds regardless of how much data has been collected. However,

because of the strong constraints imposed by Bayes’ rule and their relationship to rational

learning, Bayesian statistics offers a compelling, unified method for learning from data.

Bayes’ Rule

The goal of Bayesian analysis is to update beliefs rationally with Bayes’ Rule.

Consider again the model of Y , the number of heads out of N coin flips,

Y ∼ Binomial(p,N), where p is a free parameter. Bayes’ Rule in this case is

π(p|Y ) =
Pr(Y |p)
Pr(Y )

π(p). (1)
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The term π(p|Y ) is the posterior distribution of beliefs, that is, beliefs about the

parameter conditional on the data. The term π(p) is the prior distribution of beliefs.

Three examples of prior and posterior beliefs are provided in Figure 2A and 2B,

respectively. The term Pr(Y |p) is the likelihood function and is derived from the model.

For the binomial model, Pr(Y |p) =
(
N
Y

)
pY (1− p)N−Y . The remaining term Pr(Y ), the

probability of the data, may be re-expressed by the Law of Total Probability as

Pr(Y ) =

∫ 1

0
Pr(Y |p)π(p)dp.

Fortunately, it is unnecessary to compute Pr(Y ) to express posterior beliefs. The

distribution of posterior beliefs π(p|Y ) must be proper, that is, the area under the curve

must be 1.0. The term Pr(Y ) is a normalizing constant on π(p|Y ) such that∫ 1
0 π(p|Y )dp = 1. Often, the expression for this normalizing constant is obvious from the

form of Pr(Y |p)π(p) and need not be explicitly computed.

Let’s use Bayes’ Rule to express the posterior beliefs for the prior in Figure 2A for

Analyst II. This prior is π(p) = K0p(1− p)3, where K0 is a constant that assures the prior

integrates to 1.0. The data are 8 heads in 12 flips, and the likelihood Pr(Y |p) is(
12
8

)
p8(1− p)4. Multiplying the prior and likelihood yields the following:

π(p|Y = 8) = Kp9(1− p)7,

where K is a constant of proportionality chosen such that
∫ 1

0 π(p|Y = 8)dp = 1. The

dashed line in Figure 2B is the evaluation of π(p|Y = 8) for all values of p.

Bayes’ Rule is completely general, and may be extended to models with more than

one parameter as follows: Let Y denote a vector of data which is assumed to be generated

by some model M with a vector of parameters denoted by θ, i.e., Y ∼M(θ). Then

π(θ|Y ) ∝ Pr(Y |θ)π(θ).

Once again, Pr(Y |θ) is the likelihood function in this context, and Bayes’ Rule may

succinctly be stated as, “The posterior is proportional to the product of the likelihood and
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prior.” Bayesian updating, in contrast to frequentist parameter estimation, is highly

constrained. There is only one Bayes’ Rule, and it may be followed consistently without

exception. One of the appeals of Bayesian updating is its conceptual simplicity and

universal applicability.

The binomial model is useful for modeling dichotomous outcomes such as accuracy

on a given trial. It is often useful to model continuous data as normally distributed. For

example, suppose we wished to know the effects of “Smarties,” a brand of candy, on IQ.

Certain children have been known to implore their parents for Smarties with the claim

that it assuredly makes them smarter. Let’s assume for argument sake that we have fed

Smarties to a randomly selected group of school children, and then measured their IQ. Let

Y = (Yi, . . . , Yn) be a vector that denotes the IQ of the children fed Smarties. We model

these IQ scores as

Yi
iid∼ Normal(µ, σ2),

where iid indicates that each observation is independent and identically distributed.

The goal is to derive posterior beliefs about µ and σ2 given prior beliefs and the

data themselves. For now, we focus on µ and, for simplicity, assume that σ2 is known to

equal the population variance of IQ scores, σ2 = 152 = 225. In Section 2.3, we relax this

assumption, and discuss how to update beliefs on multiple parameters simultaneously.

An application of Bayes’ rule to update beliefs about µ yields

π(µ|Y ) ∝ L(µ,Y )π(µ),

where Y is the vector of observations and L is the likelihood function of µ. The likelihood

for a sequence of independent and identically normally distributed observations is

L(µ,Y ) = f(Y1;µ, σ2)× f(Y2;µ, σ2)× . . . f(Yn;µ, σ2) =
∏
i

f(Yi;µ, σ
2)

where f(x;µ, σ2) is the density function of a normal with mean µ and variance σ2

evaluated at x.
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A prior distribution on µ is needed. Consider prior beliefs to be distributed as

normal:

µ ∼ Normal(a, b).

Constants a and b are the mean and variance of the prior, respectively, and must be

chosen a priori. In this case, we consider two analysts with differing beliefs. Analyst I is

doubtful that Smarties have any effect at all, and has chosen a tightly constrained prior

with a = 100 and b = 1. Analyst II on the other hand, is far less committal in her beliefs,

and chooses µ = 100 and b = 200 to show this lack of commitment. These choices are

shown in Figure 3A.

With this prior, the posterior beliefs may be expressed as

π(µ|Y ) ∝

(∏
i

f(Yi;µ, σ
2)

)
f(µ; a, b).

The above equation may be expanded and simplified, and Rouder and Lu (2005) among

many others show that

π(µ|Y ) = f(cv, v),

where

c =

(
nȲ

σ2
+
a

b

)
, (2)

v =

(
n

σ2
+

1

b

)−1

, (3)

and n is the sample size and Ȳ is the sample mean.

The posterior beliefs about µ follow a normal with mean cv and variance v, and this

fact may equivalently be stated as

µ|Y ∼ Normal(cv, v).

One property of the posterior is that it reflects information from both the prior and the

data. Here, the posterior mean is a weighted average of the sample mean and the prior
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mean, with the number of observations determining the relative weight. If there are few

observations the prior has relatively higher weight than if there are many observations. A

second property of the posterior is that it is the same functional form as the prior — both

are normally distributed. When a prior and posterior have the same functional form, the

prior is termed conjugate. Conjugate priors are desirable because they are computationally

convenient. A third notable property of the posterior is that it may be well localized even

if the prior is arbitrarily variable. The prior variance b reflects the certitude of prior

information, with larger settings corresponding to less certitude. In fact, it is possible to

set b =∞, and the resulting prior may be called flat as all values of µ are equally

plausible. This flat prior is improper – that is, it does not integrate to a finite value. Even

though the prior is improper the posterior in this case is proper and is given by

µ|Y ∼ Normal(Ȳ , σ2/N).

For the flat prior, the posterior for µ corresponds to the frequentist sampling distribution

of the mean.

Figures 3B and 3C show the role of sample size in posterior beliefs. Figure 3B shows

the posterior beliefs of the two analysts for a very small set, N = 10, with a sample mean

IQ score of Ȳ = 95. The data has slightly shifted and slightly widened the beliefs of

Analyst I, the analyst who was a priori convinced there was little chance of an effect. It

has more dramatically sharpened the beliefs of Analyst II, the less committed analyst.

Figure 3C shows the case with a larger set, N = 100, and Ȳ = 95. Here the posterior

beliefs are more similar because the data are sufficient in sample size to have a large effect

relative to the prior. In the large-sample limit, these posterior distributions will converge

to a point at the true value of µ.



Bayesian Hierarchical Models 14

Sampling: An Approach To Bayesian Analysis with more Than One Parameter

In the previous example, we modeled IQ scores as a normal under the assumption

that σ2 is known. Clearly such an assumption is too restrictive, and a more reasonable

goal is to state posterior beliefs about both µ and σ2, jointly. An application of Bayes’

Rule yields

π(µ, σ2|Y ) ∝ L(µ, σ2,Y )π(µ, σ2).

The prior density, posterior density, and likelihood functions in this case are evaluated on

a plane and take as inputs ordered pairs. Examples of a prior, likelihood, and posterior

are shown in Figure 4 as two-dimemsional surfaces. Because the posterior and prior in the

above equation are functions of µ and σ2 taken jointly, they are referred to as the joint

posterior and the joint prior, respectively. Fortunately, deriving joint posteriors is

straightforward as it is simply the result of Bayes’ Rule: the posterior is the product of

the likelihood and the prior.

Expressing joint posterior beliefs as surfaces may be reasonable for models with two

dimensions, but becomes unwieldy as the dimensionality increases. For instance, in

models with separate parameters for individuals and items, it is not uncommon to have

thousands of parameters. The expression of joint posterior distributions over high

dimensional parameter vectors is not helpful. Instead, it is helpful to plot marginal

posteriors. The marginal posterior for one parameter, say µ, is denoted π(µ|Y ), and is

obtained by averaging (integrating) the uncertainty in all other parameters. The two

marginal posteriors for this model are

f(µ|Y ) =

∫
σ2

f(µ, σ2|Y )dσ2

f(σ2|Y ) =

∫
µ
f(µ, σ2|Y )dµ

Marginal posteriors for the two parameters are shown in Figure 4, right panel. As can be

seen, these provide a convenient expression of posterior beliefs.
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Although marginal posteriors are useful for expressing posterior beliefs, they may be

difficult to compute. In the two-parameter model, above, the computation was

straightforward because the integration was over a single dimension and could be solved

numerically. In typical models, however, there may be hundreds or thousands of

parameters. To express each marginal, all other parameters must be integrated out, and

the resulting integrals span hundreds or even thousands of dimensions. This problem of

high dimensional integration was a major pragmatic barrier for the adoption of Bayesian

methods until the 1980s, when new computational methods became feasible on low-cost

computers.

A modern approach to the integration problem is sampling from the joint posterior

distribution. We draw as many samples from the joint that is needed to characterize it to

arbitrary precision. Each of these samples is a vector that has the dimensionality of the

joint distribution. To characterize the marginal for any parameter, the corresponding

element in the joint sample is retained. For example, if (µ, σ2)[m] is the mth sample from

the joint, then the value of µ, which we denote as µ[m], is a sample from the marginal

posterior distribution of µ, and the collection µ[1], µ[2], . . . characterize this distribution to

arbitrary precision. So integrating the joint posterior may be reduced to sampling from it.

Directly sampling from high-dimensional distributions is often difficult. To mitigate

this difficulty, alternative indirect algorithms have been devised. The most popular class

of these algorithms is called Markov chain Monte Carlo (MCMC) sampling. These

techniques are covered in depth in many textbooks. (e.g., Jackman, 2009). Here, we cover

the briefest outline. Those readers familiar with MCMC, or those who have no desire to

learn about it may skip this outline without loss as the remainder of the chapter does not

rely on understanding MCMC.

We focus here on the most common MCMC algorithm, the Gibbs sampler (Gelfand

& Smith, 1990; Geman & Geman, 1984). When building a Gibbs sampler, researchers
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focus on conditional posterior distributions. The conditional posterior distributions are the

beliefs about one parameter if all others were known. For the normal model, there are two

full conditional posteriors denoted f(µ|σ2,Y ) and f(σ2|µ,Y ). These are easily derived

from an application of Bayes’ rule:

π(µ|σ2,Y ) = L(µ, σ2,Y )π(µ|σ2),

π(σ2|µ,Y ) = L(µ, σ2,Y )π(σ2|µ).

If the priors are independent of one another,

π(µ|σ2,Y ) = L(µ, σ2,Y )π(µ),

π(σ2|µ,Y ) = L(µ, σ2,Y )π(σ2).

The reason researchers focus on the conditionals is that it is straightforward to analytically

express these distributions. Moreover, and more importantly, it is often straightforward to

sample from conditionals, which is the key to Gibbs sampling. For the normal-distribution

case above, we denote samples of µ as µ[1]|σ2, µ[2]|σ2,. . . ,µ[M ]|σ2, where M is the total

number of samples. Likewise, the samples of the conditional posterior distribution of σ2

may be denoted (σ2)[1]|µ, . . . , (σ2)[M ]|µ. These samples, however, are conditional on

particular values of µ and σ2, and, consequently, are not so interesting.

The goal is to obtain marginal samples of µ and σ2, rather than conditional ones. In

our specific case, this goal may be achieved as follows: On the mth iteration, µ is sampled

conditional on the previous value of σ2, i.e., µ[m]|(σ2)[m−1]; then σ2 is sampled conditional

on the just-sampled value of µ, i.e., (σ2)[m]|µ[m−1]. In this manner, the samples are being

conditioned on different values on every iteration, and if conditioning is done this way, the

joint distribution of the samples approaches the true joint posterior as the number of

samples grows infinitely large. If we have samples from the joint distribution,

characterizing any marginal distribution is as easy as ignoring samples of all other
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parameters. Researchers new to Bayesian analysis can use modern tools such as JAGS

(Plummer, 2003) and WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000) to perform

MCMC sampling without much special knowledge.2 Those with more experience can

write their own code in high-level languages such as R or Matlab. We discuss these

options further in the concluding remarks.

Bayesian Hierarchical Models Are Simple and Natural

There are several advantages of adopting a Bayesian perspective, and one of the

most salient for cognitive modelers is the ease of building hierarchical models that may

account for variation in real-world settings. Consider the following simple experiment

where I individuals provide K replications in each of J conditions. To demonstrate the

elegance and power of hierarchical modeling, we build a sequence of models, illustrating

each with reference to an experiment where I = 20 individuals provided K = 10

replications in each of J = 2 conditions. Figure 5A shows the overall mean for each of

these conditions (bars) as well as the participant-by-condition means (points and lines).

As can be seen there is much participant variability as well as strong evidence for a

condition effect.

Model M1: An Aggregation Model. One approach, which corresponds to

aggregating, is to simply model condition means. Let Yijk denote the kth observation for

the ith participant in the jth condition. The model is

Yijk
iid∼ Normal(βj , σ

2). (4)

where βj is the condition effect. A prior is needed for each βj and for σ2, and we chose

priors that makes no practical commitment to the location of these effects:

βj
iid∼ Normal(0, 106)

σ ∼ Uniform(0, 100)
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The model is designed to assess condition means, and the condition effect may be defined

as the contrast β2 − β1.

We provide here the BUGS language code snippets for analysis of this and

subsequent models, and these snippets may be used with WInBUGS, OpenBUGS, or

JAGS. Those researchers who are not familiar with these packages will benefit from the

well-written documentation (see Footnote 2) as well as the tutorials provided in Kruschke

(2011) Ntzoufras (2009) and Lee & Wagenmakers (forthcoming book in press). The

following model statement defines Model M1:

model {

#y i s a v e c t o r o f a l l o b s e r v a t i o n s

#cond i s a v e c t o r t h a t i n d i c a t e s the c o n d i t i o n

#mu i s a v e c t o r o f J c o n d i t i o n means

# Model o f Observa t ions

for (n in 1 :N) {

y [ n ] ˜ dnorm(mu[ cond [ n ] , tau )

}

# note : BUGS uses p r e c i s i o n to parameter i ze normal

# note : tau i s p r e c i s i o n

#Prior on mu

for ( j in 1 : J ){

mu ˜ dnorm(0 , . 0001)}

#Prior on p r e c i s i o n ( s t d . dev . )

tau <− pow( sigma , −2)
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sigma ˜ dunif (0 , 100)

}

Posterior beliefs about this contrast are shown as the dotted line in Figure 5B.3

This model is not hierarchical as there is a single source of variability.

Model M2: A Cell Means Model. A more useful approach is to model the

combination of participant and condition effects:

Yijk
iid∼ Normal(µij , σ

2). (5)

The parameters µij are the mean of the ith participant in the jth condition. In the

example with 2 conditions and 20 participants, there are 40 of these effects, and each

needs a prior. Again, we choose diffuse priors:

µij
iid∼ Normal(0, 106)

σ ∼ Uniform(0, 100)

The BUGS language snippet that defines this model is

model{

#y i s a v e c t o r o f a l l N o b s e r v a t i o n s

#sub i s a v e c t o r t h a t i n d i c a t e s the p a r t i c i p a n t

#cond i s a v e c t o r t h a t i n d i c a t e s the c o n d i t i o n

#mu i s an I−by−J matrix

#Model o f o b s e r v a t i o n s

for (n in 1 :N){

y [ n ] ˜ dnorm(mu[ sub [ n ] , cond [ n ] ] , tau )

}
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#Prior on mu

for ( i in 1 : I ){

for ( j in 1 : J ){

mu[ i , j ] ˜ dnorm(0 , . 0 1 )

}}

#Prior on p r e c i s i o n ( s t d . dev . )

tau <− pow( sigma , −2)

sigma ˜ dunif (0 , 100)

}

The posterior means for the cell mean parameters are shown in Figure 5C as solid

lines. As can be seen, participants often have higher mean scores in Condition 2 than in

Condition 1, providing evidence for the condition effect. We can construct a contrast for

this comparison:
∑

i(µi2 − µi1)/I, and the posterior for this contrast is shown as the solid

line in Figure 5B.4 Note that this posterior is better localized than the comparable

contrast from Model M1. The reason is simple: individual variation is subtracted off

leading to better parameter localization. It should be noted that these posterior beliefs,

however, do not generalize to new participants. The reason is that people-by-condition

effects are “fixed” in that they may vary arbitrarily and provide no information about a

population of people, conditions, or their combination.

Model M3: A First Hierarchical Model. Although the interpretation of the cell

means model is familiar and reasonable, we can make even more useful models. We start

with the same data model:

Yijk
iid∼ Normal(µij , σ

2).

In the previous model the priors on µij were very diffuse. Yet, it is unreasonable to think



Bayesian Hierarchical Models 21

that these cell mean parameters will arbitrarily differ from one another. For example, if

we were studying IQ, it is hard to believe that participant-by-condition means vary by

even a factor of two, much less orders of magnitude. One way of adding information

without undue influence is through a hierarchical prior. Consider the prior

µij
iid∼ Normal(ν, δ2) (6)

where ν and δ describe the center and dispersion of the population of cell means. These

values need not be fixed a priori. Instead, they may be treated as parameters upon which

we may place priors and compute posteriors. Consider the following priors:

ν ∼ Normal(0, 106)

δ ∼ Uniform(0, 100)

Here, we bring little if any a priori information about the population center and

dispersion of effects. All we commit to is that the effects themselves are samples from this

parent distribution. Hierarchical models are therefore implemented as hierarchical priors.

Of course, a prior is still needed on σ2, and we again use a diffuse prior:

σ ∼ Uniform(0,100).

The hierarchical nature of model M3 is embedded in the relationships between

parameters. The data Yijk are only explicitly dependent on the mean µij and variance σ2.

If we know these two parameters, then the population from which Yijk is drawn is

completely determined. Conversely, having observed Yijk, we constrain our beliefs about

the parameters governing this population distribution. The hierarchy in M3 reflects the

treatment of the collection µ parameters. These parameters are also treated as draws from

a population. If we could observe the µ parameters directly, we could learn about ν, which

is a parent parameter for this population of mean parameters. However, ν is one step

removed from the data: we can only learn about ν through learning about the µ
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parameters. Bayes’ rule, the unifying rule for Bayesian inference, gives us a natural way of

representing the way the information passes from level to level though the simple fact

from probability theory that p(a, b) = p(a|b)p(b). The posterior p(µ, ν|Y ) is then

proportional to

p(µ, ν|Y ) ∝ (Y |µ, ν)p(µ, ν) = p(Y |µ)p(µ|ν)p(ν)

(the parameters σ2 and δ are assumed known for clarity). The right-hand side of the

equation shows how knowledge about parameters is passed up through the hierarchy from

the data to the higher-level parameters: the data Y and parameter µ are connected

through the likelihood, and µ and ν are connected through the hierarchical prior on µ.

Likewise, constraint from ν is passed down through the hierarchy from higher-level level

parameters to the lower-level ones.

Figure 5D shows the effects of the constraint passed from the higher-level

parameters. As can be seen, extreme cell mean values for this hierarchical model are

somewhat moderated; that is, they are modestly pulled toward the population mean. This

effect is often termed hierarchical shrinkage, and it leads to posterior estimates that have

lower root-mean-squared error than nonhierarchical estimates. The effect here is modest

because the data were generated with low noise for demonstration, but shrinkage can be

especially pronounced in nonlinear models.

The use of hierarchical models has an element that is counterintuitive: one adds

parameters to the prior to add constraint. In most models, adding parameters is adding

flexibility, and more parameters implies a more flexible account of data. In hierarchical

models, the opposite may hold when additional parameters are added to the prior. For

instance, the cell means model has 40 cell mean parameters and a variance parameter; the

hierarchical model has these 41 parameters and additional population mean and variance

parameters. Yet, the cell means model is more flexible as the 40 cell mean parameters are

free to vary arbitrarily. In the hierarchical model, no one cell mean can stray arbitrarily
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from the others, and this behavior is a form of constraint even though it comes with more

rather than less parameters. In Bayesian hierarchical modeling, flexibility is not a matter

of the number of parameters, it is, instead, a matter of constraint or the lack there of in

the priors. Principled Bayesian model comparison methods such as Bayes factors

capitalize on this fact.

In addition to more accurate estimation of individual effects through shrinkage,

hierarchical models offer two other benefits. First, posterior beliefs about group

parameters, ν and δ2 in the above example, can be generalized to other

participant-by-condition combinations. These parameters, therefore, provide a means of

applying the results more broadly. Second, more advanced models may be placed on ν

that incorporate covariates.

Hierarchical models are straightforward to code in BUGS:

model{

#y i s a v e c t o r o f a l l N o b s e r v a t i o n s

#sub i s a v e c t o r t h a t i n d i c a t e s the p a r t i c i p a n t

#cond i s a v e c t o r t h a t i n d i c a t e s the c o n d i t i o n

#mu i s an I−by−J matrix

#Model o f Observa t ions

for (n in 1 :N){

y [ n ] ˜ dnorm(mu[ sub [ n ] , cond [ n ] ] , tau )

}

#Leve l 1 : Prior on mu

for ( i in 1 : I ){

for ( j in 1 : J ){
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mu[ i , j ] ˜ dnorm(nu , tauI )

}}

#Leve l 1 : Prior on p r e c i s i o n ( s t d . dev . )

tau <− pow( sigma , −2)

sigma ˜ dunif (0 , 100)

#Leve l 2 : Prior on nu , tauI

nu˜dnorm( 0 , . 000001 )

tauI <− pow( de l I , −2)

d e l I ˜ dunif (0 , 100)

}

Model M4: A Hierarchical Model with Main Effects and Interactions. The shrinkage

in Model M3 shrinks estimates toward the overall mean. Yet, there is clearly structure

from participants and items. We add this structure into the prior as follows:

µij
iid∼ Normal(αi + βj , δ

2)

Priors are then needed for αi, the effect of the ith participant, βj , the effect of the jth

condition, as well as δ2 which now describes the variability of participant-by-condition
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interactions. We use the following vaguely-informative priors:

αi ∼ Normal(0, δ2
α)

βj = Normal(0, 106)

δ ∼ Uniform(0, 100)

δα ∼ Uniform(0, 100)

This new model treats participant effects as random effects drawn from a population

distribution. Generalization to new people is possible through the inclusion of population

variability parameter δ2
α. This model also treats conditions as fixed effects, that is,

conditions may differ from each other without constraint. Here, there is no concept of a

population of conditions and, consequently, the results apply only to these two conditions.

Finally, the interaction term reflects an asymptotic interaction between people and

conditions; that is, it is the interaction that remains even in the limit that the number of

replicates, K, increases without bound. We include this term hesitantly, because if it is

too large, it is difficult to interpret the participant and condition effects. In these cases,

we recommend that this interaction become more a target of inquiry, and models of

patterned interactions be proposed and compared.

Even though this model is even more heavily parameterized than the previous

hierarchical model, it is straightforward to estimate with the following BUGS snippet:

model{

#Model o f o b s e r v a t i o n s

for (n in 1 :N){

y [ n ] ˜ dnorm(mu[ sub [ n ] , cond [ n ] ] , tau )}

#Leve l 1 : Prior on mu



Bayesian Hierarchical Models 26

for ( i in 1 : I ){

for ( j in 1 : J ){

mu[ i , j ] ˜ dnorm( alpha [ i ]+beta [ j ] , tauI )

}}

#Leve l 1 : Prior on tau

tau <− pow( sigma , −2)

sigma ˜ dunif (0 , 100)

#Leve l 2 : Prior on alpha , be t a

for ( i in 1 : I ){ alpha [ i ] ˜dnorm(0 , tauA )}

for ( j in 1 : J ){ beta [ j ] ˜dnorm( 100 , . 001 )}

#Leve l 2 : Prior on tauI , s c a l e o f i n t e r a c t i o n s .

tauI <− pow( de l I , −2)

d e l I ˜ dunif (0 , 100)

#Leve l 3 : Prior on tauA , v a r i a b i l i t y o f i n d i v i d u a l s

tauA <− pow( delA , −2)

delA ˜ dunif (0 , 100)

}

The resulting values for the cell means, which are now treated hierarchically, are

shown as dotted lines in Figure 5C. Notice that these are smoothed versions of the

cell-means models. The shrinkage to main effects has smoothed away the interaction,

making it easy to interpret the condition and participant effects. In fact, in this model,
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the standard-deviation of these interactions (δ ≈ 1.2) is considerably less than the

standard deviation of participant effects (δα ≈ 9.9) or the difference between condition

effects (≈ 4.0). The posterior beliefs about the condition effect is shown as the dashed line

in Figure 5B.

Model M5: A Hierarchical Main-Effects Model. In many cases, it is desirable to

remove the asymptotic interaction terms from the models. Not only do these make

interpretation difficult, they may be unidentifiable, and this is certainly the case when

there is a single replicate per cell (K = 1). Instead of modeling µij as a random variable,

we assume it is a deterministic sum:

µij = αi + βj .

Missing is the parameter δ, which effectively is set to zero. The prior on the main effects is

retained. This additive approach is taken in both applications in Sections 4 and 5. The

following snippet is used for analysis:

model{

#Model o f o b s e r v a t i o n s

for (n in 1 :N){

y [ n ] ˜ dnorm( alpha [ sub [ n ] ]+beta [ cond [ n ] ] , tau )}

#Leve l 1 : Prior on a lpha and be ta

for ( i in 1 : I ){ alpha [ i ] ˜dnorm(0 , tauA )}

for ( j in 1 : J ){ beta [ j ] ˜dnorm( 100 , . 001 )}

#Leve l 1 : Prior on tau

tau <− pow( sigma , −2)
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sigma ˜ dunif (0 , 100)

#Leve l 2 : Prior on tauA , v a r i a b i l i t y across p a r t i c i p a n t s

tauA <− pow( delA , −2)

delA ˜ dunif (0 , 100)

}

Analysis of M5 results in essentially the same posterior beliefs as Model M4 for

main effects of people (αi), conditions (βj) and their combinations (µij). These results are

omitted for clarity. Deciding whether asymptotic interactions are needed is not easy, and

the topic of model comparison is discussed next.

Comparing Hierarchical Models

In most applications, it is useful to define a set of models and compare the relative

evidence from the data for each. In the above case, for example, we might assess the

evidence for interactions between people and condition by considering the relative

evidence for Model M4, the model with interactions, and M5, the model without

interactions. The condition main effect may be assessed if we compare Model M5 to a

model without condition effects, specified by the constraint µij = αi. The critical question

is how the relative evidence for such models may be stated.

Model comparison is a broad and expansive topic about which there is substantial

diversity in the statistical and psychological communities. The chapter by Myung in this

volume provides an overview of some of this diversity. Even though there is much

diversity, we believe one model comparison method, comparison by Bayes factor (Jeffreys,

1961), is superior because it (a) directly provides a measure of evidence for models, and

(b) is the unique, logical resultant of applying Bayes’ Rule to model comparison.

Although Bayes factors are ideal, they are associated with two issues. First, the Bayes
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factor is sometimes difficult to compute, especially in hierarchical settings. Second, the

Bayes factor is integrally dependent on the prior. We and others have argued that this

dependency is necessary for valid model comparison (Gallistel, 2009; Jeffreys, 1961;

Lindley, 1957; Rouder, Speckman, Sun, Morey, & Iverson, 2009; Rouder, Morey,

Verhagen, Province, & Wagenmakers, n.d.; Wagenmakers, 2007). Nonetheless, it often is

not obvious how to structure priors to compare different nonlinear accounts of the same

phenomena. In the following, (i) we define Bayes factors; (ii) discuss some of the

difficulties in implementation including computational difficulties; (iii) mention some of

the methods of circumventing these difficulties; and (iv) describe an alternative, Deviance

Information Criterion (DIC, Spiegelhalter, Best, Carlin, & van der Linde, 2002), a less

desirable but more computationally feasible approach that may be used as a last resort.

The Bayesian interpretation of probability as subjective belief licenses the placing of

probabilities (beliefs) on models themselves. To compare two models, denoted generically

as MA and MB, we may place the model probabilities in ratio. The ratios

Pr(MA)/Pr(MB) and Pr(MA | Y )/Pr(MB | Y ) are the prior and posterior odds of the

models, respectively. Bayes’ Rule for updating these prior odds is

Pr(MA)

Pr(MB)
=
f(Y | MA)

f(Y | MB)
× Pr(MA)

Pr(MB)
. (7)

The term f(Y | MA)/f(Y | MB) is called the Bayes factor, and it describes the updating

factor from the data (Kass & Raftery, 1995). We denote the Bayes factor by BAB, where

the subscripts indicate which two models are being compared. The term f(Y | MA) may

be expressed as:

f(Y | MA) =

∫
θ∈ΘA

LA(θ,Y )πA(θ)dθ, (8)

where LA is the likelihood ofMA, and θ and ΘA are the parameters and parameter space,

respectively, of the model. This term is called the marginal likelihood, and it is the

weighted average of the likelihood over all possible parameter values. We use mA and mB
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to denote the marginal likelihoods of models MA and MB, respectively. The Bayes factor

is

BAB =
mA

mB

A Bayes factor of BAB = 10 means that prior odds should be updated by a factor of 10 in

favor of model MA; likewise, a Bayes factor of BAB = .1 means that prior odds should be

updated by a factor of 10 in favor of model MB. Bayes factors of BAB =∞ and BAB = 0

correspond to infinite support of one model over the other, with the former indicating

infinite support for model MA and the later indicating infinite support for model MB.

Bayes factors provide a principled method of inference, and advocacy in psychology

is provided by Edwards, Lindman, & Savage (1963); Gallistel (2009); Myung & Pitt

(1997); R. D. Morey & Rouder (2011); Rouder et al. (2009); Wagenmakers (2007) among

others. The are two critical issues in use: (i) the choice of priors πA and πB, and (ii) the

evaluation of the integrals in (8), and we discussed these issues in term. First, the choice

of priors: The choice of priors will vary from situation to situation. In the case of linear

models, such as those underlying t-test, linear regression, and ANOVA, researchers

already know the range of plausible effect sizes. For instance, rarely do effect sizes exceed

5 or 10 in value, and we do not run experiments to search for effect sizes less than say .05

in value. These constraints may be capitalized upon to form reasonable and broadly

acceptable priors for comparisons within the linear model (see Rouder et al., 2012; Rouder

& Morey, 2012). The case for nonlinear models, however, is neither as straightforward nor

as well explored. It is an area for future work.

The second issue is the evaluation of the integral in computing the marginal

likelihoods in (8). Here, the parameter space is often of high dimension, especially in

hierarchical models where there are several parameters for each participant and item. For

example, in the subsequent recognition memory example in Section 6, there are over 2000

parameters. To compute the Bayes factor, the likelihood must be integrated across the
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whole of the parameter space, and integration across high dimensional spaces is in general

challenging. To make matters worse, the likelihood is often concentrated, and the

integrand is highly peaked. The integration often becomes a matter of finding a needle in

a multidimensional haystack. The topic of computing Bayes factors, especially in

hierarchical models, remains topical in Bayesian analysis. Fortunately, Bayes factor

computations for linear models underlying the t-test, ANOVA, and regression are well

established. Seminal work was provided by Jeffreys (1961) and Zellner and Siow (1980).

The key innovation from Zellner and Siow was specifying the problem in a manner so that

the integration over most dimensions could be done analytically in closed form. The

modern implementation of this work is provided among several others by Bayarri &

Garcia Donato (2007) and Liang, Paulo, Molina, Clyde, and Berger (2008). Our group has

translated and refined this approach, and we provide Bayes factor replacements for t-tests

(Rouder et al., 2009), statistical-equivalence tests (Morey & Rouder, 2011), linear

regression (Rouder & Morey, 2012), and ANOVA (Rouder, Morey, Speckman, & Province,

2012). We have also provided development of meta-analytic Bayes factors so researchers

can assess the totality of evidence across several experiments (Rouder & Morey, 2011;

Rouder, Morey, & Province, 2013).

Although this Bayes factor development covers a majority of statistical models used

in psychology, current computational development does not cover a bulk of the

psychological process model which tend to be nonlinear. There are a handful of advanced

techniques that are potentially applicable, and we mention them in passing. Perhaps the

most relevant is the Laplace approximation, where the likelihood is assumed to approach

its asymptotic normal limits, and its center and spread are well approximated by classical

statistical theory. Sarbanés Bové & Held (2011) use the Laplace approximation to provide

a general Bayes factor solution for the class of generalized linear models. An alternative

technique is to perform the integration by Monte Carlo sampling, and there has been
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progress in a number of sampling based techniques including bridge sampling (Meng &

Wong, 1996), importance sampling (Doucet, de Freitas, & Gordan, 2001), and a new

variation on importance sampling termed direct sampling (Walker, Laud, Zanterdeschi, &

Damien, 2011). These techniques assuredly will prove useful for future Bayes factor

development in psychology. The final advanced technique in our survey is Bayes factor

computation by means of Savage-Dickey density ratio (Dickey & Lientz, 1970; Verdinelli &

Wasserman, 1995) which has been imported into psychology by C. C. Morey, Cowan,

Morey, & Rouder (2011); Wagenmakers, Lodewyckx, Kuriyal, & Grasman (2010); Wetzels,

Grasman, & Wagenmakers (2010). Under appropriate circumstances, this ratio is the

Bayes factor and is convenient to calculate (see Morey, Rouder, Pratte, and Speckman,

2011). Wagenmakers et al. (2010) and Rouder et al. (2012) show how the Savage Dickey

ratio can be used in the comparison of hierarchical models of psychological process, and

Rouder et al. uses it to discriminate between the power law and exponential law of

learning in hierarchical settings.

Even though there has been notable progress in developing Bayes factor solutions,

there are several cases without such development, and, at present, Bayes factors are

simply not available. For these cases, we have a backup, inference by deviance information

criterion (DIC, Spiegelhalter et al., 2002). DIC is a Bayesian analog to AIC designed for

hierarchical models. Unlike AIC (and BIC), DIC accounts for the flexibility of priors, and

penalizes models with more flexible priors more heavily than those with more constrained

priors. Such behavior is useful for hierarchical models where increased prior constraint is

often accompanied by an increased number of parameters. The main advantage of DIC is

computational ease; it is often computed in the same MCMC chain used to compute

posterior beliefs about the parameters. The disadvantage is one of principle and

calibration. DIC shares a calibration with AIC, and like AIC, tends to penalize flexibility

too lightly (Rouder et al., 2009), especially for large sample sizes. The argument in favor
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of BIC over AIC by Raftery can be applied to favor Bayes factor over DIC. Unlike Bayes

factor, which is a principled direct result of Bayes’ Rule, DIC is best viewed as a heuristic

motivated by out-of-sample concerns. We use DIC only as a matter of last resort, and

recommend Bayes factors be used without qualification when they are available.

Hierarchical Models For Assessing Subliminality

It is widely believed that a large portion of human cognition is unconscious

(A. G. Greenwald, 1992). This unconscious cognition can manifest itself in many ways: for

instance, we may have unconscious goals and motivations; we may be unaware of the

effects of stimuli on these goals and motivations; we may even perceive and be affected by

stimuli of which we are unaware. One example of this last category is the popular myth of

subliminal advertisements in movie theaters: advertisement images were purportedly

presented so quickly as to be consciously imperceptible, nonetheless these images

supposedly changed the subsequent behavior of movie-goers by causing them to buy

expensive snacks. This myth has been debunked (Rogers, 1992).

The fact that subliminal advertising was debunked does not mean that under

controlled circumstances psychologists could not observe similar (if smaller) effects. In

fact, many such claims have been made with demonstrations of subliminal priming (for

examples, see Dehaene et al., 1998; Finkbeiner, 2011; A. Greenwald, Klinger, & Schuh,

1995; Merikle, Smilek, & Eastwood, 2001; Naccache & Dehaene, 2001). A subliminal

prime is one that cannot be perceived, and yet has an effect on subsequent behavior. To

answer the question of whether subliminal priming exists, one needs to show both that a

prime cannot be identified at a rate greater than chance, and that this prime nonetheless

affects behavior.

The priming task we model is a numerosity decision task. Participants are shown

target numerals between 2 and 8 and judge whether the target is greater than or less than
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5 in value. Preceding these targets are quickly-presented-and-subsequently masked prime

numerals. When the prime has the same status as the target, that is, both are less than

five or both are greater than five, responses are known to be speeded relative to the case

where the prime and target do not have the same relation to five (e.g., Dehaene et al.,

1998; Naccache & Dehaene, 2001; Koechlin, Naccache, Block, & Dehaene, 1999; Pratte &

Rouder, 2009). The critical question is whether this priming persists even for

presentations that are so fast that participants’ ability to assess the prime’s relation to

five is at chance level.

We focus here on the difficult part of assessing subliminal priming: the assessment

of whether a prime is identified at chance or above chance. Let pi denote the true

probability correct for the ith participant. Primes are subliminal for the ith participant if

true performance is at chance, that is, if pi = .5. One approach to assessing subliminality

is to perform a null hypothesis significance test on the observed proportions against the

null hypothesis that average performance across participants is at chance. If yi and Ni are

the number correct and the total sample size for participant i, and qi = yi/Ni, we might

test the hypothesis that µq = .5. If the sample sizes Ni are reasonably large and

approximately the same, then q̄ will be approximately normal, and we can apply a t test

against µq = .5. If the t test is not statistically significant, we conclude that performance

is at chance. This logic has been used in several influential studies in the subliminal

priming literature (Dehaene et al., 1998; Murphy & Zajonc, 1993).

There are at least two major flaws with this approach. First, there is the issue of

acceptance of the null hypothesis. The t test essentially assumes that all participants are

performing at chance unless there is sufficient evidence against that hypothesis. Thus,

researchers who wish to show subliminality have an incentive to underpower their designs;

after all, with sufficiently small sample sizes even very good average performance can be

claimed to be subliminal simply because there is not enough evidence against it. For this
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reason, a null result from a null hypothesis significance test can not be used to argue for

the null hypothesis itself. We will use a Bayesian approach to overcome this fundamental

limitation.

The second major flaw with this t test approach is a failure to properly separate

between-participant and across-participant variability. Consider the sources of variability

in estimated performances qi: the statistic can vary due to natural sampling variability in

the task, but also because people vary in their performance. We can reduce the first

source of variability by increasing Ni, but not the second. Consider the extreme case

where we have two participants, and they perform an arbitrarily large number of trials.

Suppose that q1 = .6 and q2 = .9. We know that both participants are above chance with

near-perfect certainty as Ni →∞, yet, we will always conclude that all participants are at

chance because with two participants, the t test will not lead to a rejection of the null.

The failure to account for variability across participants leads not only to spurious

acceptances of the null, but to spurious rejections as well. For example, suppose that to

avoid the power problem outlined above, we obtain a large sample of participants.

Suppose 99% truly perform at chance, and 1% of the population performs above chance at

p = .75. Although 99% of our population is appropriate for assessing subliminal priming,

we are guaranteed to reject all participants as we increase our sample size, because the

true average performance is above 0.5.

To make these problems concrete, we consider data from a subliminal priming

experiment reported in Rouder, Morey, Speckman, & Pratte (2007). In this experiment 27

participants performed 288 trials in a prime identification task. The primes were displayed

briefly, only 22 ms, and were forward and backward masked. Performance was generally

quite poor, with an average proportion correct of .53. A classical analysis of the accuracies

reveals that average accuracy is significantly different from .5 (t26 = 2.7, p = 0.011) with a

95% CI of (0.507, 0.551). Yet, a more complex story unfolds when participant variability is



Bayesian Hierarchical Models 36

examined (see Figure 6A). Although the majority of participants’ observed accuracies are

clustered around .5, there are two who score substantially higher than the rest. Under the

logic outlined in the previous paragraphs, we would throw out the entire sample, even

though the majority of participants’ observed accuracies are concordant with chance

performance. Instead, in the next section we present a hierarchical approach that

overcomes this issue by modeling participant variability in assessing the subliminally of

primes.

A Hierarchical Model

Our goal is to specify models of accuracy that include a psychological threshold. If

activation from the stimulus is lower than this threshold, then performance is at chance.

Conversely, if activation exceeds this threshold, then performance is above chance. The

hierarchical model presented below is from Rouder, Morey, et al. (2007). At the first level

of the model, we link the observed number correct yi for each participant with an

underlying true parameter, pi:

yi
iid∼ Binomial(pi, Ni)

A hierarchical model is developed by specifying distributions on the individual

performance parameters. In our case, we must carefully consider the parent population for

the pis. Since p is restricted to [0, 1], it is inappropriate for a traditional normal

population. Logit and probit models specify transformations of p into (−∞,∞), making

normal population distributions possible. For our purposes, however, these

transformations are inappropriate because they allow true accuracy to be below p = .5.

Instead, we use a half-probit transformation that restricts true accuracy to p ≥ .5:

pi =

 Φ (xi) xi ≥ 0

.5 xi < 0
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where Φ is the CDF of the standard normal distribution. Rouder, Morey, et al. (2007)

called this function the mass-at-chance (MAC) link, due to the fact that it allows

participants to have true performance p = .5. We call xi a “latent ability” because it

indexes a person’s ability even when pi = .5. Figure 6B shows the relationship of latent

ability to true accuracy. Consider two participants whose latent abilities are x1 = −.01

and x2 = −2. Participant 1 is very near the threshold of xi = 0; perhaps a small increase

in the duration of the prime stimuli would lead this participant to discriminate its

less-than-five status more often than chance. Participant 2, however, is very far the

threshold, and may need a larger increase in duration than Participant 1 to achieve

above-chance performance.

The second level of the hierarchical model may be specified by placing a population

distribution on the latent ability parameters:

xi
iid∼ Normal(µ, σ2)

The parameters µ and σ2 together define the proportion of the participants whose

performance is at chance. At the first level of the hierarchical model, we linked the

observations with individuals’ parameters; at the second level of the hierarchical model,

we described how the individuals’ parameters were distributed in a population. At the

third and top level of the hierarchical model, we specify prior distributions for the

parameters of the population of participants. There is some information for this

specification from the context. In subliminal priming experiments, the goal is to make the

primes difficult to see. It is therefore reasonable to place an informative prior on µ that is

centered on the value of 0:

µ ∼ Normal(0, 1)

There is also natural constraint from the experimental context on parameter σ. If σ is too

large, then bimodal distributions on pi are likely with modes at chance and at ceiling. To
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avoid bimodal distributions on performance, but still allow substantial variability across

participants we choose a uniform prior on σ:

σ ∼ Uniform(0, 1)

With all levels of the hierarchical model specified, joint and marginal posterior

distributions may be computed. Of particular interest is the marginal posterior

probability that the ith participant is performing at chance:

ωi = Pr(xi ≤ 0 | Y )

If this posterior probability is sufficiently high, then we should retain this participant to

assess whether the primes truly influence judgments about the target. Also of interest are

the marginal posteriors of the population level parameters µ and σ. A convenient statistic

is the probability that any participant drawn from the population-level distribution is at

chance. We denote this probability η, and it is

η = Φ
(
−µ
σ

)
.

For example, if η = .8 for a given stimulus duration, then we expect that 80% of people

will be at chance.

We can compute the marginal posterior distributions in a variety of ways: Rouder,

Morey, et al. (2007) derived full conditional distributions and implemented a Gibbs

sampler in R. Here, we present BUGS code model specification:

model {

for ( i in 1 :M ){

# Leve l 1 : Binomial

y [ i ] ˜ dbin ( p [ i ] , N[ i ] )
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# Transformation between p and x , l e v e l 1

p [ i ] <− phi ( x [ i ] ∗ step ( x [ i ] ) )

# Leve l 2 : p o p u l a t i o n on the l a t e n t a b i l i t i e s

x [ i ] ˜ dnorm( mu, p r e c i s i o n )

}

# Leve l 3 : Prior parameters

mu ˜ dnorm( 0 , 1 )

s i g ˜ dunif ( 0 , 1 )

# BUGS uses p r e c i s i o n , not s t d dev , to d e f i n e normal

p r e c i s i o n <− 1 / ( s i g ∗ s i g )

}

We fit the hierarchical model to the data of Rouder, Morey, et al. (2007) that is

shown in Figure 6A. Figure 6C shows the resulting posterior distribution of the proportion

of population judged to be performing at chance (η). Most of the mass is above .5,

indicating that well over half of the population has performance at chance. Of particular

interest are the posterior probabilities that the ith participant performs at chance (ωi).

Figure 6D shows the relationship between each participant’s observed accuracy yi/Ni and

the corresponding posterior mean of ωi.

One approach to selecting participants for subliminal priming analysis is to choose a

criterion c such that if ωi > c, participant i is categorized as “at chance”. The horizontal

line in Figure 6D at .95 shows one possible criterion. The three points above the horizontal

line represent participants whose priming effects we might examine; if we found evidence

of priming for those participants, it could be used as evidence for subliminal priming.
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The hierarchical model outlined above is quite simple, and allowed us to categorize

by the plausibility that their ability correspond to at-chance levels given the assumptions

of the model. Perhaps from a more broad perspective, it may viewed as a psychometric

model of performance. The key innovation is the use of a half-probit link that accounts for

a true psychological threshold. This threshold, unlike usual operationalizations in

psychophysics, describes the point on latent ability where performance first rises above

chance. One reasonable concern is the role of parametric assumptions, and the most

salient is the half-probit mapping from latent ability to probability. To model the

threshold, it seems necessary to have a link that maps many latent ability values to chance

performance, but there are many alternatives to the half-probit link, such as the CDF of a

Weibull which meet this requirement. We chose the half-probit for computational

convenience, but there remains the question of whether this link is reasonable. Moreover,

it is a somewhat open question of whether different links, such as that from the Weibull

will lead to different assessments of which participants are at chance.

Unfortunately, it seems difficult to assess the fit of the half-probit and the

dependence of conclusions of subliminality to parametric assumptions in typical priming

studies. The reason for this difficulty is that in typical studies, many participants perform

at near chance levels, and thus their performance offers little in the way of information to

determine whether the link is reasonable. A better approach may be to change the

paradigm to allow for a greater range of performance across individuals. In the current

paradigm, stimulus difficulty reflects the duration of presentation, which was set to 22ms.

In subsequent experiments (Morey et al., 2008), we asked participants to identify stimuli

presented at durations from 17 ms to 167 ms. The model extension to this case is covered

next.
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Extending the hierarchical model

Extending the paradigm and model to multiple stimulus durations affords several

advantages including the ability to state evidence that participants are at chance at

specific durations. Participants who are particularly good at identifying the primes may

require very short durations for chance performance, whereas participants who are not as

good may be at chance to a wider range of prime durations. A second advantage is that

the extended model covers the full range of performance of individuals across stimulus

duration, and in this regard, may be treated as a psychophysical and psychometric model.

The question of how well the probit-link is in accounting for performance may be assessed.

R. D. Morey, Rouder, & Speckman (2008) and R. D. Morey, Rouder, & Speckman

(2009) developed several models that allow for multiple prime duration conditions. To

demonstrate how hierarchical models can be naturally extended, we present the model of

R. D. Morey, Rouder, & Speckman (2008) here, which is the simplest of the set. Consider

an experiment in which J participants attempt to identify masked primes in I

stimulus-duration conditions. In condition i, participant j performs Nij prime

identification trials, of which yij are correct. Figure 7A shows average accuracies in a

prime identification task with I = 6 conditions (17ms, 25ms, 33ms, 58ms, 100ms, and

167ms). Identification for the shortest prime duration was extremely poor at 48%; the

longest duration prime, however, was correctly identified an average of 85% of the time.

The first level of the extended hierarchical model is essentially the same as before,

with the exception that now we index both participants and conditions. Observed

accuracy for the jth participant in the ith condition, yij , is distributed as a binomial:

yij
iid∼ Binomial(pij , Nij),

and, as before, we link true accuracy p with latent ability xij through the half-probit
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transformation:

pij =

 Φ (xij) xij ≥ 0

.5 xij < 0

In the previous model, all latent abilities x were drawn from a normal parent distribution.

In this case, however, it is desirable to have this parent distribution depend systematically

on the duration condition. We place an additive model on latent ability at the second

level:

xij = µi + αj .

where µi is the average ease with which primes in condition i are identified, and αj is the

identification ability of the jth participant. We have thus reduced the number of

parameters underlying latent ability from ij to i+ j. This type of reduction in complexity

is one of the strengths of hierarchical modeling.

We assume that the participant ability parameters αj are drawn from a normal

population:

αj | σ2
α
iid∼ Normal(0, σ2

α).

αj can thus be interpreted as the random effect of participant j. We place an inverse

gamma prior on the unknown variance σ2
α:

σ2
α | a, b ∼ Inverse Gamma(a, b)

When parameters a and b are chosen to be small (e.g., 0.01), this prior is less constraining

than the uniform prior on σ in the Rouder, Lu, et al. (2007) model. We can use a less

constraining prior here because the data extend across multiple conditions including those

where performance is definitively above chance.

The condition effect parameters µ can be interpreted as fixed effects; we thus place

independent priors on each µ:

µi
iid∼ Normal(0, 1),
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where the prior parameters were selected to be similar to those for µ in the

previously-presented model.

The full model can be described in the BUGS language:

model {

for ( j in 1 : J ){

for ( i in 1 : I ){

# Binomial , l e v e l 1

y [ i , j ] ˜ dbin ( p [ i , j ] , N[ i , j ] )

# Transformation between p and x , l e v e l 1

p [ i , j ] <− phi ( x [ i , j ] ∗ step ( x [ i , j ] ) )

# l a t e n t a b i l i t y i s now a l i n e a r combination

# of mu and a lpha

x [ i , j ] <− mu[ i ] + alpha [ j ]

}

}

# Leve l 2 − d e f i n e a lpha

for ( j in 1 : J ){

alpha [ j ] ˜ dnorm(0 , p rec i s i onAlpha )

}

# Leve l 2 − d e f i n e mu

for ( i in 1 : I ){
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mu[ i ] ˜ dnorm(0 , 1)

}

# Prior parameters , l e v e l 3

prec i s i onAlpha ˜ dgamma( aAlpha , bAlpha )

}

Figure 7, Panels B and C, show the results of fitting the model to the data shown in

Panel A. Panel B shows the posterior probability on the proportion of participants in the

six conditions who perform at chance. At the shortest duration, nearly all participants are

predicted to be at chance; at the longest, the proportion at chance is surely less than 10%.

Panel C shows the posterior probability that true performance is at chance for each

participant by condition combination, that is, Pr(xij < 0 | Y ). Each line represents a

participant, and each point on the line represents a condition.

As one would expect, the posterior probability of chance performance decreases for

all participants as the prime duration increases. For most participants, the decrease

occurs in a graded way. Interestingly, there are several participants whose curve is

non-monotonic; that is, for some posterior probability by observed performance pairs,

posterior probability increases as performance increases, which is the opposite of what one

would expect. This is due to the fact that the additive nature of the model enforces the

ordering of true performance to be the same for all participants across conditions. The

model does not allow, for instance, one participant to improve their true performance as

duration is increased from 25ms to 33ms, and another to get worse. However, because

observed performance is subject to binomial noise, differences in performance across

conditions may, for some participants, be the opposite of what one would expect. The

hierarchical model allows us to use information from all participants to infer what the
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ordering should be, and enforce it for all participants.

The extension of the hierarchical model – specifically, the addition of multiple

conditions – allows for a more constrained, more easily tested model. In the simple

hierarchical model, most participants were expected to be near chance performance,

leaving us very little information by which to falsify the model. The extended model

predicts a pattern of data for each participant across stimulus durations, and when this

pattern is violated, it will be apparent.

Consider the participant represented by the right-most line in Figure 7C. In one

condition, this participant is performing at an accuracy of .72, but the model says that

this participant is almost surely at chance in that condition. This strange result led

R. D. Morey et al. (2009) to further extend the model to allow for individual participant

slopes:

xij = θj(µi + αj).

This model allows participants to improve at different rates as the stimulus intensity is

changed, which improves model fit for some participants. Given the previous development,

such an extension is conceptually straightforward. It requires an additional prior for θ;

R. D. Morey et al. (2009) chose a normal distribution truncated below at 0, to require

that θ be positive, and thus all participants must have the same ordering of true

performance across conditions. The model can be easily defined in the BUGS language

and fit with WinBUGS or JAGS.

The current set of hierarchical models are based on IRT type formulation with a

novel link to account for thresholded behavior. Unlike IRT models, however, the effect of a

person is modeled with two parameters while the effect of items (stimulus durations in

this case) is modeled with just one. In this sense, these models may be considered perhaps

the first set of hierarchical psychophysical models. We believe that such models may be of

great use: they allow researchers to measure a truly at-chance threshold level of
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performance across a large number of individuals with a limited numbers of experimental

trials.

Subliminal priming remains a controversial topic. To assess whether it exists,

R. D. Morey (2008) asked participants to both identify primes, and then identify primed

targets. He first used the hierarchical model in R. D. Morey et al. (2009) to select

participant-by-duration combinations for which it was more likely that latent ability was

below rather than above chance. For these combinations, however, there was about 5-to-1

evidence by Bayes factor for a null priming effect on the time to identify primed targets.

Hence, once one is somewhat sure that prime identification is at chance, the priming effect

disappears! One notable study that contradicts this claim, however, comes from

(Finkbeiner, 2011). Finkbeiner used two stimulus durations in a word priming experiment,

and used the above extended hierarchical model to select participant-by-duration

combinations as being at chance. With these combinations, Finkbeiner found about

10-to-1 evidence by Bayes factor for a priming effect. The approaches used by Morey and

Finkbeiner provide for more rigorous assessment of subliminality and subliminal priming

than previous methods, and further research with them will be a valuable part of

unraveling the puzzle if and when subliminal priming occurs.

Hierarchical Models For Signal-Detection Experiments

In this section, we demonstrate how hierarchical modeling strengthens the

inferential link between theory and data in understanding human memory. We focus on

recognition memory, and a prevailing theoretical question is whether recognition memory

is mediated by a single strength process or by the two processes of recollection and

familiarity (Mandler, 1980). Aggregation, unfortunately, is the norm in recognition

memory experiments. In these experiments, the basic unit of data is a dichotomous

outcome. Either a participant indicates a test item is old or new, and to form hit and false
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alarm rates, these outcomes seemingly must be aggregated across individuals or items. In

the following section, we show how this aggregation may gravely distort conclusions about

processing. We then introduce a hierarchical model that simultaneously accounts for

participant and item variability, mitigating the need for aggregation. This hierarchical

model provides for more valid assessment of processing, and we highlight our findings

about the number and nature of processes underlying recognition memory.

Consequences of Aggregation In Memory Experiments

Recognition memory data have traditionally been modeled using the theory of

signal detection (Green & Swets, 1966; Kintsch, 1967). Each tested item is assumed to

generate some amount of mnemonic strength, which is graded and varies from trial to

trial. This strength is compared to a criterion; an “old” response is produced if this

strength is greater than the criterion, and a new response is produced otherwise. In the

most conventional approach, called equal variance signal detection, the strength

distribution for new items is a standard normal with a mean of 0 and variance of 1, and

the strength of new items is shifted by an amount d′, which serves as a sensitivity

parameter. The corresponding hit and false alarm rates are given by

h = Φ
(
d′ − C

)
,

f = Φ (−C) ,

where Φ denotes the cumulative distribution function (CDF) of the standard normal

distribution, and C denotes the criterion. If hit rates are plotted as a function of false

alarm rates for many values of the criterion, the resulting receiver operating characteristic

(ROC) curve can be used to asses the veracity of the signal detection model of memory. In

particular, this model predicts ROC curves that are curvilinear, as has now been observed

in many recognition memory experiments. In addition, this model predicts that the ROC
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curve will be symmetric about the negative diagonal. The solid black lines in Figure 8A

correspond to equal-variance signal detection ROCs for d′ = 0.7, 1.6, and 2.5.

The symmetric ROCs in Figure 8 are not characteristic of empirical ROC curves

observed in recognition memory tasks. In almost all studies, observed ROCs are

asymmetric with higher hit rates than expected for small values of false alarms (see

Glanzer, Kim, Hilford, & Adams, 1999, for a review). This asymmetric pattern can be

seen in the dashed line in Figure 8. There have been several models proposed to account

for this asymmetry, including signal detection models with strength distributions of

unequal variance across new and studied items (e.g., Ratcliff, Sheu, & Grondlund, 1992),

and signal detection models that assume non-gaussian strength distributions (e.g.,

DeCarlo, 1998; Pratte & Rouder, 2009). Alternatively, Kellen, Klauer, & Broder (2013)

argue that this asymmetry, indeed the curvature in general, is a result of aggregation and

the true underlying curves are straight lines in accordance with a discrete-state model.

Perhaps the most influential account, however, is a dual-process model proposed by

Yonelinas (1994) and Yonelinas & Parks (2007). This model assumes that the recognition

of a previously-studied item can come about by one of two separate processes: The item

can be explicitly recollected in an all-or-none fashion, or failing recollection, it may be

recognized based on its level of familiarity. Familiarity for both new and studied items

follows the equal-variance signal detection model presented above. The hit and false alarm

rates for this mixture model are given by:

h = R+ (1−R)× Φ
(
d′ − C

)
,

f = Φ (−C) ,

where d′ and C are parameters of the signal detection process governing familiarity, and R

is the probability of explicit recollection. The light, thick line in Figure 8A shows a typical

ROC prediction for this model (R = 0.29, d′ = 1.0). If R = 0, then the model reduces to
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the equal-variance signal detection model, and the resulting ROC is symmetric.

Recollection, R, has a one-to-one correspondence with the degree of asymmetry in the

ROC curve. Accordingly, the ubiquitous finding of asymmetry in ROC curves is consistent

with the presence of two processes mediating recognition memory.

We show here the potential distortions from aggregation in measuring the symmetry

of ROC curves. Let’s consider the role of item variability, as items are typically

aggregated across to form hit and false-alarm rates. Suppose, for demonstration, that

there is no recollection. That is, the data from each item follows an equal-variance signal

detection model. Let’s also suppose for demonstration that there are two items: an easy

item with a true d′ = 2.5, and a harder one, with true d′ = 0.7. The ROCs for these items

are shown as the solid lines labeled “Easy” and “Hard” in Figure 8A. Now, suppose the

hit and false alarm events are averaged over these items. It is hoped that the resulting

ROC would reflect the underlying structure, and perhaps be the middle solid line, which is

the signal detection model with d′ = 1.6, the average d′ of the easy and hard items.

Unfortunately, this ROC does not result from aggregating data. Instead, the dashed line

occurs, and this line has a substantial degree of asymmetry. This asymmetry is distortion;

an artifact of aggregation, and is not at all a signature of cognitive processing. Perhaps

most unsettling is that this distortion is asymptotic — it will remain regardless of how

much data are collected (Rouder & Lu, 2005). The dashed line is alarmingly close to the

ROC prediction for the two-process model, and researchers who fit models to data

aggregated across items run the risk of concluding that there are two processes with

substantial recollection, when in fact there is only one process.

The question of whether the data are better described by the dual-process model or

by simpler models is important and topical. It cannot be answered with data aggregated

across items or individuals, as this aggregation may gravely distort the ROC patterns. To

assess whether the asymmetry in ROC curves is a true signature of cognitive process or an



Bayesian Hierarchical Models 50

artifact of aggregation,we have constructed a series of hierarchical models (R. D. Morey,

Pratte, & Rouder, 2008; Pratte et al., 2010; Pratte & Rouder, 2011). In this chapter, we

use a hierarchical dual-process model (Pratte & Rouder, 2012) based on Yonelinas’ model

to assess ROC asymmetry. The degree of asymmetry in this model is indexed by the

recollection parameter R, with R = 0 corresponding to the symmetric curves and greater

values of R corresponding to greater degrees of asymmetry. The main feature of the model

is that it accounts for variability across individuals and items, and there is no need to

aggregate data for analysis. Consequently, estimates of recollection, which index

asymmetry, are not distorted by these nuisance sources of variation.

A Hierarchical Dual-Process Model of Recognition Memory

Consider an experiment in which each of i = 1, . . . , I participants is tested on each

of j = 1, . . . , J items. For each participant, some of these items were indeed studied, while

the rest are novel. The participant responds by endorsing one of K confidence ratings

options. In the signal detection approach, the multiple ratings options are modeled with

multiple criteria: there are K − 1 criteria as shown in Figure 8B. In constructing the

hierarchical model, it is useful to reparameterize the signal detection model such that one

of the criteria is set to 0, and the center of the new-item distribution is free. We let d(s)

and d(n) denote the centers of studied and novel-item distributions, respectively.

The hierarchical model is constructed by specifying parameters for each

participant-by-item combination. Let Rij be the participant-by-item recollection value,

and let d
(s)
ij and d

(n)
ij be the participant-by-item values of the centers of the familiarity

distribution for studied and novel items, respectively. The resulting hit and false alarm

probabilities for each participant by item combination are

hijk = Rij + (1−Rij)× Φ
(
d

(s)
ij − Cik

)
,

fijk = Φ
(
d

(n)
ij − Cik

)
,
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where fijk and hijk are the false alarm and hit rates for the ith person responding to the

jth item in the kth confidence rating. Individual criteria parameters Cik are also free to

vary across participants, reflecting individuals’ response biases for particular confidence

responses. The familiarity component of the model is depicted in Figure 8B.

In this model there are separate parameters for every participant by item

combination for novel-item familiarity, studied-item familiarity and recollection. However,

because each participant is tested on each item only once, there are no participant-by-item

replicates in the data, and thus some constraint is needed. We assume that parameters are

additive combinations of person and item effects in order to provide this constraint. The

new-item familiarity follows:

d
(n)
ij = µ(n) + α

(n)
i + β

(n)
j ,

where µ(n) denotes a grand mean, α
(n)
i denotes participant effects, and β

(n)
j denotes item

effects. Rather than place participant and item effects on the mean of studied-item

familiarity d
(s)
ij , we place them on d′ij , the difference between the studied-item and

new-item distributions:

log
(
d′ij
)

= µ(d) + α
(d)
i + β

(d)
j .

Placing an additive model on the log of d′ij constrains the increase in sensitivity due to

study to be positive for all participant by item combinations. Finally, the probability of

recollection for each person and item is given by:

Φ−1 (Rij) = µ(R) + α
(R)
i + β

(R)
j ,

where the inverse of the normal CDF (quantile) function is used to constrain the sum of

participant and item effects to be between 0.0 and 1.0, as recollection is a probability.

Although these additive structures greatly simplify the model, there are still a large

number of parameters to be estimated. Further constraint is achieved by placing
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hierarchical structures on participant and item effects. For example, new-item familiarity

values follow:

α
(n)
i ∼ Normal(0, σ2

α)

β
(n)
j ∼ Normal(0, σ2

β).

where the variance parameters are estimated from the data, and provide measures of

participant and item variability in new-item familiarity. Similar hierarchical structures are

placed on participant and item effects in studied-item familiarity and recollection,

providing for efficient parameter estimation even with small numbers of participants and

items.

Applications of the Hierarchical Memory Model

The hierarchical model allows for the estimation of underlying mnemonic processes

from recognition memory data without recourse to aggregation and the accompanying

distortions. The presented model is discussed in detail in Pratte & Rouder (2011, 2012),

and estimation may be performed with the R package HBMEM, available on CRAN.

One of the main questions is whether the asymmetry in ROC curves is truly the

result of cognitive processing, such as all-or-none recollection, or reflects distortion that

results from averaging data over participants or items, as is demonstrated in Figure 8.

This question can be answered by consideration of the mean recollection parameter (µ(R)),

a measure of ROC asymmetry that in the hierarchical model is uncontaminated by

participant and item variability. If posterior beliefs are centered far from zero, then the

ubiquitous ROC asymmetry is indeed a cognitive signature rather than an artifact. We

applied the model to Experiment 1 in Pratte et al. (2010), a large recognition memory

experiment in which 94 participants were tested on 480 items. The resulting posterior

distribution for the mean recollection parameter (µ(R)) is shown in Figure 9A. All of the

posterior mass is substantially above zero, implying that ROC asymmetry is present even
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when participant and item variability are modeled. This asymmetry is seemingly a

cognitive signature rather than an artifact of aggregation (see R. D. Morey, Pratte, &

Rouder, 2008; Pratte et al., 2010), and should be treated as an important benchmark in

theory construction.

Although both the aggregated and hierarchical analysis of these data provide the

same qualitative conclusion of ROC asymmetry, aggregation nonetheless leads to distorted

parameter estimates and a dramatic overestimation of precision of these estimates.

Familiarity, for example, is overestimated by 15% when data are aggregated over both

participants and items, compared to mean familiarity in the hierarchical model. More

alarming is the dramatic overestimation of precision from aggregation. For example, the

95% credible interval on mean recollection in Figure 9A is 2.7 times larger than the 95%

confidence interval resulting from the aggregated analysis. This overstatement of precision

from aggregation is a direct result of mismodeling multiple sources of variation and is well

known (Clark, 1973; Raudenbush & Bryk, 2002; Rouder & Lu, 2005). Conversely the

wider credible intervals from the hierarchical estimates directly represent the uncertainty

from accounting for multiple sources of variation. The differing degrees of precision has

dramatic effects on assessing whether mean recollection or familiarity changes with

condition variables, and it is possible that previous demonstrations of effects with

aggregated data are overstatements of the true significance of condition effects (Pratte &

Rouder, 2012).

The above assessment shows that ROC asymmetry is a signature of the cognitive

processes subserving recognition memory, but does not necessarily imply that recognition

memory is mediated by recollection and familiarity. The hierarchical model provides

additional insights because it provides for separate assessment of recollection and

familiarity for each individual and for each item. If recollection and familiarity are

statistically independent processes, then the recollection and familiarity across individuals
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should be uncorrelated; likewise, recollection and familiarity across items should be

uncorrelated. The dark points in Figure 9B show the relationship between recollection and

familiarity for people (α
(r)
i vs. α

(d)
i ), the light points show the relationship for items (β

(r)
j

vs. β
(d)
i ). Two trends are evident. First, there is substantial variability in both

individuals’ mnemonic abilities and how easily items are remembered. Second, there is

substantial correlation: people with high recollection also have high familiarity (r = .48),

and items with high recollection also have high familiarity (r = .49). Pratte & Rouder

(2011) found that the degree of correlation is statistically significant, but, nonetheless, a

model with only shared variability does not do as well as a model with both shared and

unique variability for recollection and familiarity.

One of the main sources of evidence for two separable processes has been the

demonstrations of dissociations across experimental conditions. One classic dissociation is

between a levels-of-processing manipulation and a perceptual-feature manipulation. Deep

levels of study, such as producing a related word to an item at study, should lead to an

increase in recollection over shallow levels of study, such as counting vowels in study

items. Conversely, changing perceptual features between study and test, such as font or

color, should attenuate familiarity rather than recollection. Some researchers have had

success in generating these dissociations, but they seemingly occur only under special

circumstances. In particular, perceptual effects are difficult to obtain (Hockley, 2008;

Mulligan, Besken, & Peterson, 2010; Murnane & Phelps, 1995), and tend to occur only in

experiments with poor overall performance (e.g. Boldini, Russo, & Avons, 2004).

In Pratte & Rouder (2012), we used the hierarchical model to assess recollection and

familiarity across 13 conditions in 4 experiments. Our manipulations produced effects that

were as large or larger than previous ones in the literature. Figure 9C shows joint

posterior distributions of mean recollection as a function of mean familiarity across the

conditions. Each ellipse is a 95% credible region. If there was evidence for two distinct
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processes, then these conditions should lie in a plane rather than on a monotonic curve

(see Bamber (1979), and Newell & Dunn (2008) for an overview of the logic in interpreting

such state-trace plots). Note that the curve is not incompatible with a double dissociation:

some pairs of points differ more in familiarity than recollection (see the poorest

performing points), whereas others differ more in recollection than familiarity (see the

best performing points). Yet, all of the condition effects can be connected by an increasing

curve, suggesting that a single factor, the location on the curve, is needed to account for

these data. We think the relative attenuation of recollection in conditions with poor

performance reflects the nature of ROC space. When performance is poor, the ROCs are

near the diagonal and it is easier to detect small overall sensitivity effects (familiarity)

than to detect small changes in asymmetry (recollection). Hence, even though our data

has degrees of dissociation as large as any in the comparable literature, they are more

compatible with a single-process approach than a dual-process approach.

Concluding Remarks

In this chapter, we have shown that while experimental psychologists have a rich

theoretical and experimental tradition, the link between theory and data often presents

difficulties in real-world contexts. These difficulties arise because theories are nonlinear,

and there is often substantial nuisance variation across individuals and items. If these

sources of nuisance variation are not appropriately modeled, they will distort the

assessment of the underlying cognitive signatures, and lead to erroneous conclusions about

theory. These potential problems occur across psychology, and here we have presented

examples in assessing learning, subliminal priming, and recognition memory.

We advocate a Bayesian hierarchical approach for linking theory and data. These

models provide for the simultaneous assessment of nuisance variation and variation from

the target cognitive process of interest. They not only allow researchers to uncover the
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rich cognitive structure in their data without aggregation artifacts, but allow for an

understanding of how this structure varies across individuals and items.

In this chapter, we have tried to focus on the types of problems hierarchical

modeling can solve, as well as an introduction to Bayesian probability. We have avoided

the nuts and bolts of estimation, and this avoidance leaves open the question of how

interested researchers can develop and analyze their own models. There are now several

excellent texts on Bayesian modeling that include development of Bayesian hierarchical

models, and advanced texts include Gelman, Carlin, Stern, & Rubin (2004) and Jackman

(2009). More recently there have been tutorials and texts specific for psychology including

Rouder & Lu (2005), Kruschke (2011), and the forthcoming book by Lee & Wagenmakers

(2013). Here, we tackle more global questions about how researchers should learn

Bayesian hierarchical modeling.

One question that arises is about software: which language and packages should

researchers use? We think researchers should invest in three classes of languages. At the

highest level, there are specialty languages developed especially for Bayesian hierarchical

modeling, of which JAGS (Plummer, 2003) and WinBUGS (Lunn et al., 2000) are the

most popular. These languages allow researchers to specify models and priors as input in

a natural random-variable notation, and provide samples from posterior distributions as

output. When they work, they often work well and save much development time.

Therefore, these specialty languages serve as an excellent first option, and, importantly,

require little special knowledge above and beyond the skills needed to specify models.

Unfortunately, as general-purpose sampling solutions, they sometimes do not work well in

specific situations: they may lack a feature necessary to define a model, or take an

exceedingly long time to sample5. Determining whether a specialty language such as

JAGS or WinBUGS will work is often fast and should be a first step for most researchers.

In cases where the general-purpose solutions fail, researchers may need to derive
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conditional posterior distributions, develop sampling routines, and implement them.

Data-analytic languages such as R (R Development Core Team, 2009) and MATLAB

(MATLAB, 2010) are ideal for implementation, and often contain useful routines for

MCMC sampling. Sometimes, however, the speed of R and MATLAB can be improved by

implementing the sampling in a fast, low-level language such as C or Fortran. We use

JAGS as our high-level specialty language, R as our mid-level data-analytic language, and

C as our fast, low-level language, and we routinely move between these three as dictated

by the model we wish to analyze. The hierarchical normal model and the mass-at-chance

model in this chapter are both implementable in JAGS; analysis of the hierarchical

dual-process model, however, was more convenient using a combination of R and C

routines for efficiency. Our hope is that as more researchers use hierarchical models, they

will develop the skills to go beyond WinBUGS or JAGS implementations as needed.

Perhaps the most important question is how should young scholars be trained so

that they may use Bayesian hierarchical models. In our view, it is hard to overstate the

usefulness of solid training in statistics including courses in calculus-based mathematical

statistics, linear algebra, and Bayesian analysis. We realize, that many talented students

will not have the aptitude or time for such study, and so it is worthwhile to consider

alternatives. A good course would be one that stresses the logic of modeling. This course

would focus on the basics of probability and statistics, and promote a deep understanding

of conditional probability. Course objectives would include the ability to specify models,

and write down and visualize likelihoods, and would provide an overview of the issues in

model comparison. We hope the appeal of Bayesian hierarchical models will motivate

more rigorous general statistical training in psychology.
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Footnotes

1Linear models are those where the expected value of the data is a linear function of

the parameters (Kutner, Nachtsheim, Neter, & Li, 2004). Examples include ANOVA and

regression. Nonlinear models violate this basic tenet: the expected value of the data

cannot be expressed as a linear function of parameters.

2JAGS may be obtained at http://mcmc-jags.sourceforge.net. WinBUGS and

OpenBUGS (for non-Windows operating systems) may be obtained at

http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml and

http://www.openbugs.info/w/, respectively.

3Posterior beliefs may be computed by subtracting MCMC samples. For the mth

iteration, let c(m) = β
(m)
2 − β(m)

1 . The dotted line in Figure 5B is the smoothed histogram

of c(m).

4The posterior for this contrast is computed in MCMC as

c(m) = (
∑

i(µ
(m)
i2 − µ

(m)
i1 )/I, and the solid line in Figure 5B is the smoothed histogram.

5Fortunately, these general-purpose samplers are extensible (Lunn, 2003) and have

improved greatly in recent years. In addition, newcomers such as Stan (Stan Development

Team, 2013) show promise.
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Figure Captions

Figure 1. Estes’ (1956) example of the difficulty of linking learning-curve data to learning

theories. A. Predictions: The solid and dashed lines show predictions from the

gradual-decrease and all-at-once models of learning, respectively . B. Data form Reder

and Ritter (1992). The grey lines show the times for 15 individuals as a function of

practice; the red circles are means across individuals, and these means decrease gradually

with practice. C. Hypothetical noise-free data from the all-at-once learning model.

Individuals’ data are shown as thin grey lines. The mean, shown with red points,

nonetheless decreases gradually. This panel shows that the mean over individuals does not

reflect the structure of any of the individuals.

Figure 2. Prior and posterior beliefs from three analysts for the probability of heads. A.

Prior beliefs. Analyst I believes that all outcomes are equally plausible; Analyst II

believes that heads are more likely than tails; and Analyst III not only believes that tails

are more likely than heads, but that the coin has no chance of favoring heads. B. The

updated posterior beliefs after observing 8 heads and 4 tails.

Figure 3. Prior and posterior beliefs on µ, the center of a normal distribution. A. Prior

beliefs of two analysts. B. Posterior beliefs conditional on a sample mean of Ȳ = 95 and a

small sample size of N = 10. C. Posterior beliefs conditional on a sample mean of Ȳ = 95

and a larger sample size of N = 100.

Figure 4. Joint prior (left), likelihood (center), and joint posterior (right) distributions

across normal-distribution parameters µ and σ2. Also shown, in the margins are the

marginal posterior distributions of µ (top) and σ2 (right).

Figure 5. The advantages of hierarchical modeling. A. Hypothetical data from 20

individuals each providing observations in 2 conditions. The bars show overall condition
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means; the points and lines show individual’s condition means. B. Posterior distributions

of the condition effect from Model M1, the aggregation model (dotted line), Model M2,

the cell means model (solid line), and Model M4, the hierarchical model with main effects

and interactions (dashed line). Localization is worse forM1 because participant variability

is not modeled. C. Solid lines show participant-by-condition point estimates fromM2; the

dotted lines show the same from M4. The shrinkage in M4 to main effects imposed by

the hierarchal prior smooths these estimates. D. A comparison of individual-by-condition

estimates from the M2, the cell-means model, and M4, the hierarchical model with main

effects and interactions. There is modest shrinkage for extreme estimates.

Figure 6. A: Violin plot of 27 participants’ performance in a prime identification task.

The confidence interval within the violin plot is the 95% CI on the mean accuracy; the

horizontal line at 0.5 represents chance performance, and the horizontal dashed lines

bound the interval within which we would expect 95% of participants to perform if they

were truly at chance. B. The mass-at-chance link function. C: Posterior distribution of the

population proportion at chance. D: Posterior probability that individuals are at chance

as a function of their observed performance.

Figure 7. A: Mean performance by duration condition in a prime identification task.

Error bars are standard errors of the mean. B: The posterior distribution, for each

duration condition, of the proportion of the population that would perform at chance in

that condition. C: Posterior probability that individuals are at chance as a function of

their observed performance. Lines represent participants, and each point a condition. The

top/left-most point for each participant is the briefest duration condition, and subsequent

points along the lines are increasingly higher-duration conditions.

Figure 8. A. ROC curves from the equal variance signal detection model (solid black
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lines), the distorted data from this model averaged over participants (dashed line), and

the dual-process model fit to these distorted data (thick grey line). B. The signal

detection component of the hierarchical dual-process model.

Figure 9. A. Posterior distribution of mean recollection, estimated with the hierarchical

dual-process model. B. Participant and item effects in recollection plotted as a function of

effects in familiarity. C. Joint posterior distributions of recollection and familiarity for 13

experimental conditions. The line is a non-parametric fit, highlighting the monotonic

relationship between recollection and familiarity estimates.
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