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Bayesian Hierarchical Models

Introduction: The need for hierarchical models

Those of us who study human cognition have no easy task. We try to understand
how people functionally represent and processes information in performing cognitive
activities such as vision, perception, memory, language, and decision making. Fortunately,
experimental psychology has a rich theoretical tradition, and there is no shortage of
insightful theoretical proposals. Also, it has a rich experimental tradition with a multitude
of experimental techniques for isolating purported processes. What it lacks, however, is a
rich statistical tradition to link theory to data. At the heart of the field is the difficult
task of trying to use data from experiments to inform theory, that is, to understand
accurately the relationships within the data and how they provide evidence for or against
various theoretical positions.

The difficulty in linking data to theory can be seen in a classic example from Estes
(1956). Estes considered two different theories of learning: one in which learning was
gradual and another where learning happened all at once. These two accounts are shown
in Figure 1A. Because these accounts are so different, adjudicating between them should
be trivial: one simply examines the data for either a step function or a gradual change.
Yet, in many cases, this task is surprisingly difficult. To see this difficulty, consider the
data of Ritter and Reder (1992), who studied the speed up in response times from
repeated practice of a mathematics tasks. The data are shown in Figure 1B, and the grey
lines show the data from individuals. These individual data are highly variable making it
impossible to spot trends. A first-order approach is to simply take the means across
individuals at different levels of practice, and these means (red points) decrease gradually,

seemingly providing support for the gradual theory of learning. Estes, however, noted that
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this pattern does not necessarily imply that learning is gradual. Instead, learning might
be all-at-once, but the time at which different individuals transition may be different.
Figure 1C shows an example; for demonstration purposes, hypothetical data are shown
without noise. If data are generated from the all-at-once model and there is variation in
this transition time, then the mean will reflect the proportion of individuals in the
unlearned state at a given level of practice. This proportion may decrease gradually, and
consequently, the mean may decrease gradually even if every participant has a sharp
transition from an unlearned state to a learned one. It is difficult to know whether the
pattern of the means reflects a signature of cognitive processing or a signature of
between-individual variation.

There are three critical elements in Estes’ example: First, individuals’ data are
highly noisy, and this degree of noise necessitates combining data across people. Second,
there is variability across individuals. For example, in the all-at-once model, people differ
in their transition times. Finally, the theories themselves are nonlinearl, and the
all-at-once model in particular has a large degree of nonlinearity. It is the combination of
these three factors—substantial variability within and across individuals that is analyzed
with nonlinear models—that makes linking data to theory difficult. Unfortunately, the
three elements that led to the difficulties in Estes’ example are nearly ubiquitous in
experimental psychology. Often data are too noisy to draw conclusions from consideration
of single individuals; there is substantial variability across participants; and realistic
models of cognition are nonlinear. Note that the problem of nuisance variation is not
limited to individuals. In memory and language studies, for instance, there is nuisance
variation across items. For instance, in the learning example, it is reasonable to expect
that if the all-at-once model held, the time to transition across different problems (items)
would vary as well.

Several psychologists have noted that drawing conclusions from aggregated data
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may be tenuous. Estes’ example in learning has been expanded upon by Haider & Frensch
(2002), Heathcote, Brown, & Mewhort (2000), Myung, Kim, & Pitt (2000), and Rickard
(2004). The worry about aggregation over individuals has also been expressed in the
context of multidimensional scaling (Ashby, Maddox, & Lee, 1994), and the worry about
aggregating over both individuals and items has been expressed in linguistics (Baayen,
Tweedie, & Schreuder, 2002) and recognition memory (Rouder, Lu, et al., 2007; Pratte,
Rouder, & Morey, 2010). Although the dangers of aggregation are widely known,
researchers still routinely aggregate. For example, in studies of recognition memory, it is
routine to aggregate data across individuals and items before fitting models. Even
experienced researchers who fit sophisticated models to individuals routinely aggregate
across some source of nuisance variation, typically items. The reason that researchers
aggregate is simple—they do not know what else to do. Consider recognition memory
tasks, where aggregation across items or individuals is seemingly necessary to form hit and
false alarm rates. Without aggregation, the data for each item-by-individual combination
is an unreplicated, dichotomous event. Our experience is that researchers would prefer to
avoid aggregating data if alternatives are available.

In this chapter we present such an alternative: hierarchical modeling. In a
hierarchical model, variability from the process of interest, as well as from nuisance sources
such as from individuals and from items, are modeled simultaneously. The input to these
models is the raw, unaggregated data, and the outputs are process-parameter estimates
across individuals and items. In this regard, not only can the behavior of these process
estimates be studied across conditions, but across individuals and items as well, and this
later activity provides a process-model informed study of individual (and item) differences.
Hence, hierarchical models turn a problem, how to account for nuisance variation that
cloud our view of process, into a strength. Hierarchical models provide both a clearer view

of process and a means of exploring how these processes vary across populations of
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individuals or items. Not surprisingly, hierarchical linear models, models that extend
ANOVA and regression to account for multiple sources of variance, are common in many
areas of psychology as well as across the social sciences (Raudenbush & Bryk, 2002).

Although hierarchical linear models are suitable in several domains, they rarely
make good models of psychological process. Instead, models that account for
psychological processes are typically nonlinear. The appropriate extensions for these cases
are hierarchical nonlinear models. It is difficult, however, to analyze hierarchical nonlinear
models in conventional frameworks. As a result, the field has been moving toward
Bayesian hierarchical models because hierarchical models, including hierarchical nonlinear
models, are far more conveniently and straightforwardly analyzed in the Bayesian
framework than in conventional ones. It is for this reason that there has been much recent
development of Bayesian hierarchical models in the mathematical psychology community,
the psychological community most concerned with developing models of psychological
process. Recent examples of applications in psychologically substantive domains include
Anders & Batchelder (2012); Averell & Heathcote (2011); Karabatsos & Batchelder
(2003); Kemp, Perfors, & Tenenbaum (2007); Lee (2006); Farrell & Ludwig (2008);
Merkle, Smithson, & Verkuilen (2011); Rouder, Morey, Cowan, & Pfaltz (2004); Rouder,
Tuerlinckx, Speckman, Lu, & Gomez (2008); Vandekerckhove, Verheyen, & Tuerlinckx
(2010) and Zeigenfuse & Lee (2010). Tutorial articles and chapters covering hierarchical
cognitive process models are becoming numerous as well (e.g., Busemeyer & Diederich,
2009; Kruschke, 2011; Lee & Wagenmakers, 2013; Rouder & Lu, 2005; Shiffrin, Lee, Kim,
& Wagenmakers, 2008), and there is a special issue of the Journal of Mathematical
Psychology (January 2011, Vol 55:1) devoted to the topic.

In the next section, we cover the basics of Bayesian probability. Included is a
comparison of the basic tenets of frequentist and Bayesian probability, examples of using

data to update prior beliefs, and an introduction to Markov chain Monte Carlo sampling.
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In Section 3, we show that the specification and analysis of hierarchical models is simple
and natural with the Bayesian approach, and in Section 4 we provide a brief discussion of
model comparison. Section 5 comprises our first example, and it is in the assessment of
subliminal priming. Subliminal priming occurs when an undetectable stimulus nonetheless
affects subsequent behavior. The methodological difficulty in establishing subliminal
priming is proving that a set of participants cannot detect a stimulus at levels above
chance. We show how previous approaches are woefully inadequate and demonstrate how
a hierarchical approach provides a possible solution. We provide a second example of
hierarchical modeling in Section 6. The example is from recognition memory, and shows
how the estimation of parameters in Yonelinas’ dual process model (Yonelinas, 1994) may
be contaminated by aggregation bias. We develop a hierarchical model for
uncontaminated assessment of the number of processes mediating recognition memory.
Finally, in Section 7 we provide some advice on choosing computer packages and receiving

training to perform Bayesian hierarchical modeling.

Bayesian Basics

In this paper we adopt a Bayesian rather than a conventional frequentist framework
for analysis. One reason is pragmatic—the development of Bayesian hierarchical models is
straightforward. Analysis of all Bayesian models, whether hierarchical or not, follows a
common path. Bayesian techniques transfer seamlessly across different domains and
models, providing a compact, unified approach to analysis. Because the Bayesian
approach is unified, models that might be intractable in frequentist approaches become
feasible with the Bayesian approach. The second reason we advocate Bayesian analysis is
on philosophical grounds. The foundational tenets of Bayesian probability are clear,
simple, appealing, and intellectually rigorous. In this section we review frequentist and

Bayesian conceptualizations of probability. More detailed presentations may be found in
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Bayesian textbooks such as Gelman, Shor, Bafumi, & Park (2007) and Jackman (2009).

Frequentist and Bayesian Conceptualizations of Probability

The frequentist conceptualization of probability is grounded in the Law of Large
Numbers. Consider an event that may happen or not, and let Y be the number of
occurrences out of N opportunities. The probability of an event is defined as the

proportion when the number of opportunities is arbitrarily large; i.e.,

= lim —.
p Ngnoo

In this formulation, we may think of the probability as a physical property of the event.
Consider, for example, the probability that a given coin results in a heads when flipped.
This probability may be thought of as a physical property much like the coin’s weight or
chemical composition. And much like weight and chemical composition, the probability
has an objective truth value even if we cannot measure it to arbitrary precision.
In both frequentist and Bayesian paradigms, useful models contain unknown

parameters that must be estimated from data. For instance, if a participant performs N
experimental trials on a task, we might model the resultant frequency of correct

performance, Y, as a binomial random variable:
Y ~ Binomial(p, N),

where p serves as a parameter and denotes the probability of a correct response on a trial.
Another simple, ubiquitous model is the normal. For example, Y might denote the mean

response time of a participant in a task and be modeled as
Y ~ Normal(, 0?),

where p and o2 serve as free parameters that denote the mean and variance of the

distribution of people’s mean response times. Although it is well known that response
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times are not normals (Luce, 1986), the normal is a reasonable model of the distribution
of mean RT across people. Consequently, the normal model is often useful for analyzing
changes in mean RT as a function of experimental conditions or other covariates.

In the frequentist conceptualization, parameters are unknown fixed values which, in
turn, are estimated from data. Because frequentist probability stresses the large-sample
limit, the approach does not provide strict guidance on estimating parameters in finite
samples sizes. Consequently, there are multiple approaches to estimation including finding
estimates that maximize the likelihood (ML) or, alternatively, finding estimates that
minimize squared error between predicted and observed data points (LS). These methods
are not equivalent, and they may lead to different estimates in certain circumstances. For
example, the ML estimator of o2 in the normal model is 6% = > (y; — §)?/N while the LS
estimator is 62 = > (y; — 7)%/(N — 1). For frequentists, a minimal measure of
acceptability of an estimator is its large-sample behavior. Principled estimators are
consistent: they converge to true values in the large-sample limit. Both the ML and LS
estimators of o2 are consistent because they converge to the true value as N — oo.

The Bayesian conceptualization of probability differs substantially from the
frequentist one. Probabilities are statements of subjective belief held by observers about
the occurrences of events. In the Bayesian formulation, probabilities describe the analyst’s
belief rather than a physical property of the system under study. Analysts may express
their beliefs compactly as distributions. Figure 2A shows the beliefs of three analysts
about a certain coin, or more specifically about p, the probability that a flip of a coin will
result in heads rather than tails. Analyst I believes that all values of p are equally likely.
This belief is shown by the solid flat line. Analyst II believes heads is more likely than
tails, and this belief is shown by the dotted line. Analyst III believes not only that tails
are more likely than heads, but that there is no chance whatsoever that the coin favors

heads. This belief is shown by the dashed line. These beliefs are called prior beliefs,
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because they are expressed before observing the data. After expressing these prior beliefs,
the three analysts together flip the coin repeatedly and observe 8 heads in 12 flips. The
key tenet of Bayesian probability is that beliefs may be updated rationally in
light of data. To do so, one applies Bayes’ Rule, which is discussed subsequently. The
rationally updated belief distributions, called the posterior beliefs, are shown in Figure 2B.
There are three posterior distributions, one for each analyst. There are a few noteworthy
points: First, the beliefs of all three analysts have been narrowed by the data; in
particular, for Analyst I, the beliefs have updated from a flat distribution to one that is
centered near the proportion of heads and with narrowed variance. Second, even though
the prior beliefs of Analysts I and Analyst I diverged markedly, the posterior beliefs are
quite similar. Third, Analyst III had ruled out certain values, all those for p > .50 a
priori. Indeed, because these have been ruled out, no result can make them probable, and
the posterior has no density for p > .50.

In summary, Bayesian probability does not prescribe what beliefs analysts should
hold. Instead, the emphasis is on how these beliefs should be updated in light of data.
Posterior beliefs are still subjective even though they reflect data. For Bayesians,
probabilities remain a construct of the observer rather than an objective property of the
system, and this property holds regardless of how much data has been collected. However,
because of the strong constraints imposed by Bayes’ rule and their relationship to rational

learning, Bayesian statistics offers a compelling, unified method for learning from data.
Bayes’ Rule

The goal of Bayesian analysis is to update beliefs rationally with Bayes’ Rule.
Consider again the model of Y, the number of heads out of N coin flips,

Y ~ Binomial(p, N'), where p is a free parameter. Bayes’ Rule in this case is

Pr(Y|p)

m(plY) = WW(P)- (1)
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The term 7(p|Y’) is the posterior distribution of beliefs, that is, beliefs about the
parameter conditional on the data. The term 7(p) is the prior distribution of beliefs.
Three examples of prior and posterior beliefs are provided in Figure 2A and 2B,
respectively. The term Pr(Y|p) is the likelihood function and is derived from the model.
For the binomial model, Pr(Y|p) = (];,[)py(l — p)V=Y. The remaining term Pr(Y), the

probability of the data, may be re-expressed by the Law of Total Probability as

1
Pr(v) = [ Povio)e(o)dr

Fortunately, it is unnecessary to compute Pr(Y’) to express posterior beliefs. The
distribution of posterior beliefs 7(p|Y’) must be proper, that is, the area under the curve
must be 1.0. The term Pr(Y) is a normalizing constant on m(p|Y’) such that
fol m(p|Y)dp = 1. Often, the expression for this normalizing constant is obvious from the
form of Pr(Y|p)m(p) and need not be explicitly computed.

Let’s use Bayes’ Rule to express the posterior beliefs for the prior in Figure 2A for
Analyst II. This prior is 7(p) = Kop(1 — p)?, where Ky is a constant that assures the prior
integrates to 1.0. The data are 8 heads in 12 flips, and the likelihood Pr(Y'|p) is

(182) p®(1 — p)*. Multiplying the prior and likelihood yields the following:

m(p]Y =8) = Kp’(1 —p)",
where K is a constant of proportionality chosen such that fol m(plY =8)dp = 1. The
dashed line in Figure 2B is the evaluation of 7(p|Y = 8) for all values of p.
Bayes’ Rule is completely general, and may be extended to models with more than

one parameter as follows: Let Y denote a vector of data which is assumed to be generated

by some model M with a vector of parameters denoted by 0, i.e., Y ~ M(0). Then
m(0lY) < Pr(Y|0)r(0).

Once again, Pr(Y|0) is the likelihood function in this context, and Bayes’ Rule may

succinctly be stated as, “The posterior is proportional to the product of the likelihood and
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prior.” Bayesian updating, in contrast to frequentist parameter estimation, is highly
constrained. There is only one Bayes’ Rule, and it may be followed consistently without
exception. One of the appeals of Bayesian updating is its conceptual simplicity and
universal applicability.

The binomial model is useful for modeling dichotomous outcomes such as accuracy
on a given trial. It is often useful to model continuous data as normally distributed. For
example, suppose we wished to know the effects of “Smarties,” a brand of candy, on 1Q.
Certain children have been known to implore their parents for Smarties with the claim
that it assuredly makes them smarter. Let’s assume for argument sake that we have fed
Smarties to a randomly selected group of school children, and then measured their 1Q. Let
Y = (Yi,...,Y,) be a vector that denotes the IQ of the children fed Smarties. We model
these IQ scores as

y; & Normal(p, o%),
where 7id indicates that each observation is independent and identically distributed.

The goal is to derive posterior beliefs about ; and o2 given prior beliefs and the
data themselves. For now, we focus on u and, for simplicity, assume that o2 is known to
equal the population variance of IQ scores, 0> = 152 = 225. In Section 2.3, we relax this
assumption, and discuss how to update beliefs on multiple parameters simultaneously.

An application of Bayes’ rule to update beliefs about p yields

m(plY) oc L(p, Y)m(p),

where Y is the vector of observations and L is the likelihood function of p. The likelihood

for a sequence of independent and identically normally distributed observations is

L(p,Y) = f(Yisp,0%) x f(Yas p,0°%) X .o f(Yoy p,0%) = Hf(Yi§M702)

where f(z; u, 02) is the density function of a normal with mean x and variance o

evaluated at x.
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A prior distribution on p is needed. Consider prior beliefs to be distributed as
normal:

p ~ Normal(a, b).

Constants a and b are the mean and variance of the prior, respectively, and must be
chosen a priori. In this case, we consider two analysts with differing beliefs. Analyst I is
doubtful that Smarties have any effect at all, and has chosen a tightly constrained prior
with a = 100 and b = 1. Analyst II on the other hand, is far less committal in her beliefs,
and chooses p = 100 and b = 200 to show this lack of commitment. These choices are
shown in Figure 3A.

With this prior, the posterior beliefs may be expressed as

m(uY) o <H f(l”i;u,UQ)) f(p; a,b).

The above equation may be expanded and simplified, and Rouder and Lu (2005) among

many others show that
m(uY) = f(cv,v),

where

c = <g+2) 2)
) - (;u;) 3)

and n is the sample size and Y is the sample mean.
The posterior beliefs about 4 follow a normal with mean cv and variance v, and this

fact may equivalently be stated as
ulY ~ Normal(cv,v).

One property of the posterior is that it reflects information from both the prior and the

data. Here, the posterior mean is a weighted average of the sample mean and the prior
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mean, with the number of observations determining the relative weight. If there are few
observations the prior has relatively higher weight than if there are many observations. A
second property of the posterior is that it is the same functional form as the prior — both
are normally distributed. When a prior and posterior have the same functional form, the
prior is termed conjugate. Conjugate priors are desirable because they are computationally
convenient. A third notable property of the posterior is that it may be well localized even
if the prior is arbitrarily variable. The prior variance b reflects the certitude of prior
information, with larger settings corresponding to less certitude. In fact, it is possible to
set b = oo, and the resulting prior may be called flat as all values of u are equally
plausible. This flat prior is improper — that is, it does not integrate to a finite value. Even

though the prior is improper the posterior in this case is proper and is given by
p|Y ~ Normal(Y,o?/N).

For the flat prior, the posterior for u corresponds to the frequentist sampling distribution
of the mean.

Figures 3B and 3C show the role of sample size in posterior beliefs. Figure 3B shows
the posterior beliefs of the two analysts for a very small set, N = 10, with a sample mean
IQ score of Y = 95. The data has slightly shifted and slightly widened the beliefs of
Analyst I, the analyst who was a priori convinced there was little chance of an effect. It
has more dramatically sharpened the beliefs of Analyst II, the less committed analyst.
Figure 3C shows the case with a larger set, N = 100, and Y = 95. Here the posterior
beliefs are more similar because the data are sufficient in sample size to have a large effect
relative to the prior. In the large-sample limit, these posterior distributions will converge

to a point at the true value of p.
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Sampling: An Approach To Bayesian Analysis with more Than One Parameter

In the previous example, we modeled IQ scores as a normal under the assumption
that o2 is known. Clearly such an assumption is too restrictive, and a more reasonable
goal is to state posterior beliefs about both x and o2, jointly. An application of Bayes’
Rule yields

(1, 0?Y) o< L(p, 0%, Y )7 (s, 0°).

The prior density, posterior density, and likelihood functions in this case are evaluated on
a plane and take as inputs ordered pairs. Examples of a prior, likelihood, and posterior
are shown in Figure 4 as two-dimemsional surfaces. Because the posterior and prior in the
above equation are functions of ;i and o2 taken jointly, they are referred to as the joint
posterior and the joint prior, respectively. Fortunately, deriving joint posteriors is
straightforward as it is simply the result of Bayes’ Rule: the posterior is the product of
the likelihood and the prior.

Expressing joint posterior beliefs as surfaces may be reasonable for models with two
dimensions, but becomes unwieldy as the dimensionality increases. For instance, in
models with separate parameters for individuals and items, it is not uncommon to have
thousands of parameters. The expression of joint posterior distributions over high
dimensional parameter vectors is not helpful. Instead, it is helpful to plot marginal
posteriors. The marginal posterior for one parameter, say pu, is denoted 7(u|Y), and is
obtained by averaging (integrating) the uncertainty in all other parameters. The two

marginal posteriors for this model are

f@Y) = [ fonot¥)do®
FEY) = [ S0y

Marginal posteriors for the two parameters are shown in Figure 4, right panel. As can be

seen, these provide a convenient expression of posterior beliefs.
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Although marginal posteriors are useful for expressing posterior beliefs, they may be
difficult to compute. In the two-parameter model, above, the computation was
straightforward because the integration was over a single dimension and could be solved
numerically. In typical models, however, there may be hundreds or thousands of
parameters. To express each marginal, all other parameters must be integrated out, and
the resulting integrals span hundreds or even thousands of dimensions. This problem of
high dimensional integration was a major pragmatic barrier for the adoption of Bayesian
methods until the 1980s, when new computational methods became feasible on low-cost
computers.

A modern approach to the integration problem is sampling from the joint posterior
distribution. We draw as many samples from the joint that is needed to characterize it to
arbitrary precision. Fach of these samples is a vector that has the dimensionality of the
joint distribution. To characterize the marginal for any parameter, the corresponding
element in the joint sample is retained. For example, if (u, 02)["4 is the mth sample from
the joint, then the value of u, which we denote as ul™, is a sample from the marginal
posterior distribution of u, and the collection ,um,,up], ... characterize this distribution to
arbitrary precision. So integrating the joint posterior may be reduced to sampling from it.

Directly sampling from high-dimensional distributions is often difficult. To mitigate
this difficulty, alternative indirect algorithms have been devised. The most popular class
of these algorithms is called Markov chain Monte Carlo (MCMC) sampling. These
techniques are covered in depth in many textbooks. (e.g., Jackman, 2009). Here, we cover
the briefest outline. Those readers familiar with MCMC, or those who have no desire to
learn about it may skip this outline without loss as the remainder of the chapter does not
rely on understanding MCMC.

We focus here on the most common MCMC algorithm, the Gibbs sampler (Gelfand

& Smith, 1990; Geman & Geman, 1984). When building a Gibbs sampler, researchers
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focus on conditional posterior distributions. The conditional posterior distributions are the
beliefs about one parameter if all others were known. For the normal model, there are two
full conditional posteriors denoted f(u|o?,Y) and f(o?|u,Y). These are easily derived

from an application of Bayes’ rule:

m(ulo®Y) = L(p,o® Y)m(ulo?),

w0 Y) = L(p, 0> Y)r(o?|p).
If the priors are independent of one another,

w(ulo®Y) = L(p, 0o Y)r(w),

m(o?|w,Y) = L(p, 0% Y)r(c?).

The reason researchers focus on the conditionals is that it is straightforward to analytically
express these distributions. Moreover, and more importantly, it is often straightforward to
sample from conditionals, which is the key to Gibbs sampling. For the normal-distribution
case above, we denote samples of p as pll|o?, ul@|o?,... uM|o2, where M is the total
number of samples. Likewise, the samples of the conditional posterior distribution of o2
may be denoted ()|, ..., (62)M|u. These samples, however, are conditional on
particular values of 1 and o2, and, consequently, are not so interesting.

The goal is to obtain marginal samples of 1 and o2, rather than conditional ones. In
our specific case, this goal may be achieved as follows: On the mth iteration, u is sampled
conditional on the previous value of o2, i.e., ul™|(62)™=1; then o2 is sampled conditional
on the just-sampled value of p, i.e., (02)[m]\u[m_11. In this manner, the samples are being
conditioned on different values on every iteration, and if conditioning is done this way, the
joint distribution of the samples approaches the true joint posterior as the number of
samples grows infinitely large. If we have samples from the joint distribution,

characterizing any marginal distribution is as easy as ignoring samples of all other
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parameters. Researchers new to Bayesian analysis can use modern tools such as JAGS
(Plummer, 2003) and WinBUGS (Lunn, Thomas, Best, & Spiegelhalter, 2000) to perform
MCMC sampling without much special knowledge.2 Those with more experience can
write their own code in high-level languages such as R or Matlab. We discuss these

options further in the concluding remarks.

Bayesian Hierarchical Models Are Simple and Natural

There are several advantages of adopting a Bayesian perspective, and one of the
most salient for cognitive modelers is the ease of building hierarchical models that may
account for variation in real-world settings. Consider the following simple experiment
where [ individuals provide K replications in each of J conditions. To demonstrate the
elegance and power of hierarchical modeling, we build a sequence of models, illustrating
each with reference to an experiment where I = 20 individuals provided K = 10
replications in each of J = 2 conditions. Figure 5A shows the overall mean for each of
these conditions (bars) as well as the participant-by-condition means (points and lines).
As can be seen there is much participant variability as well as strong evidence for a
condition effect.

Model My: An Aggregation Model. One approach, which corresponds to
aggregating, is to simply model condition means. Let Y;;; denote the kth observation for

the ith participant in the jth condition. The model is
Yiik i Normal(8;, o). (4)

where 3; is the condition effect. A prior is needed for each /3; and for o2, and we chose

priors that makes no practical commitment to the location of these effects:

8; ' Normal(0,10°)

o~ Uniform(0, 100)
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The model is designed to assess condition means, and the condition effect may be defined
as the contrast o — (1.

We provide here the BUGS language code snippets for analysis of this and
subsequent models, and these snippets may be used with WInBUGS, OpenBUGS, or
JAGS. Those researchers who are not familiar with these packages will benefit from the
well-written documentation (see Footnote 2) as well as the tutorials provided in Kruschke
(2011) Ntzoufras (2009) and Lee & Wagenmakers (forthcoming book in press). The

following model statement defines Model My:

model {
#y is a wvector of all observations
#cond 1s a vector that indicates the condition

#mu is a vector of J condition means

# Model of Observations
for (n in 1:N) {
y[n] 7 dnorm(mu|cond[n], tau)
}
# note: BUGS uses precision to parameterize normal

# note: tau 1s precision

#Prior on mu
for (j in 1:J){

mu -~ dnorm(0, .0001)}

#Prior on precision (std. dev.)

tau <— pow|(sigma, —2)
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sigma ~ dunif(0, 100)

Posterior beliefs about this contrast are shown as the dotted line in Figure 5B.3
This model is not hierarchical as there is a single source of variability.
Model Mgy: A Cell Means Model. A more useful approach is to model the

combination of participant and condition effects:
Yijk o Normal(p;;, 0?). (5)

The parameters p;; are the mean of the ith participant in the jth condition. In the
example with 2 conditions and 20 participants, there are 40 of these effects, and each

needs a prior. Again, we choose diffuse priors:

%

i d Normal(0, 10°)

o~ Uniform(0, 100)

The BUGS language snippet that defines this model is

model{

#y 1s a wvector of all N observations

#sub 1s a wvector that indicates the participant
#cond 1s a vector that indicates the condition

#mu is an I-by—J matrix

#Model of observations
for (n in 1:N){
y[n] 7 dnorm(mu[sub[n],cond[n]], tau)

}
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#Prior on mu
for (i in 1:1){
for (j in 1:J){
mu[i,j] 7 dnorm(0, .01)

13

#Prior on precision (std. dev.)
tau <— pow(sigma, —2)

sigma ~ dunif(0, 100)

The posterior means for the cell mean parameters are shown in Figure 5C as solid
lines. As can be seen, participants often have higher mean scores in Condition 2 than in
Condition 1, providing evidence for the condition effect. We can construct a contrast for
this comparison: ), (ti2 — ps1)/1, and the posterior for this contrast is shown as the solid
line in Figure 5B.4 Note that this posterior is better localized than the comparable
contrast from Model M. The reason is simple: individual variation is subtracted off
leading to better parameter localization. It should be noted that these posterior beliefs,
however, do not generalize to new participants. The reason is that people-by-condition
effects are “fixed” in that they may vary arbitrarily and provide no information about a
population of people, conditions, or their combination.

Model M3: A First Hierarchical Model. Although the interpretation of the cell
means model is familiar and reasonable, we can make even more useful models. We start
with the same data model:

Yijk b Normal(p;, 0?).

In the previous model the priors on p;; were very diffuse. Yet, it is unreasonable to think
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that these cell mean parameters will arbitrarily differ from one another. For example, if
we were studying IQ, it is hard to believe that participant-by-condition means vary by
even a factor of two, much less orders of magnitude. One way of adding information

without undue influence is through a hierarchical prior. Consider the prior
Lij i Normal(v, 62) (6)

where v and 6 describe the center and dispersion of the population of cell means. These
values need not be fixed a priori. Instead, they may be treated as parameters upon which

we may place priors and compute posteriors. Consider the following priors:

v ~ Normal(0,10°)

0 ~ Uniform(0, 100)

Here, we bring little if any a priori information about the population center and
dispersion of effects. All we commit to is that the effects themselves are samples from this
parent distribution. Hierarchical models are therefore implemented as hierarchical priors.

Of course, a prior is still needed on o2, and we again use a diffuse prior:
o ~ Uniform(0,100).

The hierarchical nature of model M3 is embedded in the relationships between
parameters. The data Y, are only explicitly dependent on the mean f;; and variance a2
If we know these two parameters, then the population from which Y;;;, is drawn is
completely determined. Conversely, having observed Yj;, we constrain our beliefs about
the parameters governing this population distribution. The hierarchy in Mg reflects the
treatment of the collection p parameters. These parameters are also treated as draws from
a population. If we could observe the p parameters directly, we could learn about v, which

is a parent parameter for this population of mean parameters. However, v is one step

removed from the data: we can only learn about v through learning about the u



Bayesian Hierarchical Models 22

parameters. Bayes’ rule, the unifying rule for Bayesian inference, gives us a natural way of
representing the way the information passes from level to level though the simple fact
from probability theory that p(a,b) = p(a|b)p(b). The posterior p(p,v|Y’) is then
proportional to

(e, v|Y) oc (Y, v)p(p, v) = p(Y |u)p(p|v)p(v)

(the parameters 02 and § are assumed known for clarity). The right-hand side of the
equation shows how knowledge about parameters is passed up through the hierarchy from
the data to the higher-level parameters: the data Y and parameter p are connected
through the likelihood, and g and v are connected through the hierarchical prior on .
Likewise, constraint from v is passed down through the hierarchy from higher-level level
parameters to the lower-level ones.

Figure 5D shows the effects of the constraint passed from the higher-level
parameters. As can be seen, extreme cell mean values for this hierarchical model are
somewhat moderated; that is, they are modestly pulled toward the population mean. This
effect is often termed hierarchical shrinkage, and it leads to posterior estimates that have
lower root-mean-squared error than nonhierarchical estimates. The effect here is modest
because the data were generated with low noise for demonstration, but shrinkage can be
especially pronounced in nonlinear models.

The use of hierarchical models has an element that is counterintuitive: one adds
parameters to the prior to add constraint. In most models, adding parameters is adding
flexibility, and more parameters implies a more flexible account of data. In hierarchical
models, the opposite may hold when additional parameters are added to the prior. For
instance, the cell means model has 40 cell mean parameters and a variance parameter; the
hierarchical model has these 41 parameters and additional population mean and variance
parameters. Yet, the cell means model is more flexible as the 40 cell mean parameters are

free to vary arbitrarily. In the hierarchical model, no one cell mean can stray arbitrarily



Bayesian Hierarchical Models 23

from the others, and this behavior is a form of constraint even though it comes with more
rather than less parameters. In Bayesian hierarchical modeling, flexibility is not a matter
of the number of parameters, it is, instead, a matter of constraint or the lack there of in
the priors. Principled Bayesian model comparison methods such as Bayes factors
capitalize on this fact.

In addition to more accurate estimation of individual effects through shrinkage,
hierarchical models offer two other benefits. First, posterior beliefs about group
parameters, v and 62 in the above example, can be generalized to other
participant-by-condition combinations. These parameters, therefore, provide a means of
applying the results more broadly. Second, more advanced models may be placed on v
that incorporate covariates.

Hierarchical models are straightforward to code in BUGS:

model{

#y is a wvector of all N observations

#sub 1s a wvector that indicates the participant
#cond 1s a vector that indicates the condition

#mu is an I-by—J matrix

#Model of Observations
for (n in 1:N){
y[n] 7 dnorm(mu[sub[n],cond[n]], tau)

}

#Level 1: Prior on mu
for (i in 1:T1){

for (j in 1:J){
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mul[i,j] 7 dnorm(nu,taul)

13

#Level 1: Prior on precision (std. dev.)
tau <— pow|(sigma, —2)

sigma = dunif(0, 100)

#Level 2: Prior on nu, taul
nu dnorm(0,.000001)
taul <— pow(dell, —2)

dell = dunif(0, 100)

Model My: A Hierarchical Model with Main Effects and Interactions. The shrinkage
in Model M3 shrinks estimates toward the overall mean. Yet, there is clearly structure

from participants and items. We add this structure into the prior as follows:

id

pi; < Normal(; + f3,6%)

Priors are then needed for oy, the effect of the ith participant, §;, the effect of the jth

condition, as well as 82 which now describes the variability of participant-by-condition
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interactions. We use the following vaguely-informative priors:

o; ~ Normal(0,62)
B; = Normal(0,10%)
9 ~ Uniform(0, 100)

da ~ Uniform(0, 100)

This new model treats participant effects as random effects drawn from a population
distribution. Generalization to new people is possible through the inclusion of population
variability parameter §2. This model also treats conditions as fixed effects, that is,
conditions may differ from each other without constraint. Here, there is no concept of a
population of conditions and, consequently, the results apply only to these two conditions.
Finally, the interaction term reflects an asymptotic interaction between people and
conditions; that is, it is the interaction that remains even in the limit that the number of
replicates, K, increases without bound. We include this term hesitantly, because if it is
too large, it is difficult to interpret the participant and condition effects. In these cases,
we recommend that this interaction become more a target of inquiry, and models of
patterned interactions be proposed and compared.

Even though this model is even more heavily parameterized than the previous

hierarchical model, it is straightforward to estimate with the following BUGS snippet:

model{
#Model of observations
for (n in 1:N){

y[n] 7 dnorm(mu[sub|n],cond[n]], tau)}

#Level 1: Prior on mu
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for (i in 1:1){
for (j in 1:J){
mu[i,j] 7 dnorm(alpha[i]+beta[j],taul)

13

#Level 1: Prior on tau
tau <— pow(sigma, —2)

sigma ~ dunif(0, 100)

#Level 2: Prior on alpha, beta
for (i in 1:1){ alpha[i] dnorm(0,tauA)}

for (j in 1:J){ beta]j] dnorm(100,.001)}

#Level 2: Prior on taul, scale of interactions.
taul <— pow(dell, —2)

dell ~ dunif(0, 100)

#Level 38: Prior on tauA, variability of individuals
tauA <— pow(delA, —2)

delA 7 dunif(0, 100)

The resulting values for the cell means, which are now treated hierarchically, are
shown as dotted lines in Figure 5C. Notice that these are smoothed versions of the
cell-means models. The shrinkage to main effects has smoothed away the interaction,

making it easy to interpret the condition and participant effects. In fact, in this model,
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the standard-deviation of these interactions (0 &~ 1.2) is considerably less than the
standard deviation of participant effects (d, ~ 9.9) or the difference between condition
effects (= 4.0). The posterior beliefs about the condition effect is shown as the dashed line
in Figure 5B.

Model Ms: A Hierarchical Main-Effects Model. In many cases, it is desirable to
remove the asymptotic interaction terms from the models. Not only do these make
interpretation difficult, they may be unidentifiable, and this is certainly the case when
there is a single replicate per cell (K = 1). Instead of modeling p;; as a random variable,

we assume it is a deterministic sum:

Wij = o + B;.

Missing is the parameter d, which effectively is set to zero. The prior on the main effects is
retained. This additive approach is taken in both applications in Sections 4 and 5. The

following snippet is used for analysis:

model{

#Model of observations
for(n in 1:N){

y[n] 7 dnorm(alpha[sub[n]]+beta[cond[n]], tau)}

#Level 1: Prior on alpha and beta
for (i in 1:1){ alpha[i] dnorm(0,tauA)}

for (j in 1:J){ beta]j] dnorm(100,.001)}

#Level 1: Prior on tau

tau <— pow(sigma, —2)
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sigma ~ dunif(0, 100)

#Level 2: Prior on tauA, variability across participants
tauA <— pow(delA, —2)

delA ~ dunif(0, 100)

Analysis of M3 results in essentially the same posterior beliefs as Model My for
main effects of people (o), conditions (/;) and their combinations (1;;). These results are
omitted for clarity. Deciding whether asymptotic interactions are needed is not easy, and

the topic of model comparison is discussed next.

Comparing Hierarchical Models

In most applications, it is useful to define a set of models and compare the relative
evidence from the data for each. In the above case, for example, we might assess the
evidence for interactions between people and condition by considering the relative
evidence for Model My, the model with interactions, and M3, the model without
interactions. The condition main effect may be assessed if we compare Model M5 to a
model without condition effects, specified by the constraint j;; = a;. The critical question
is how the relative evidence for such models may be stated.

Model comparison is a broad and expansive topic about which there is substantial
diversity in the statistical and psychological communities. The chapter by Myung in this
volume provides an overview of some of this diversity. Even though there is much
diversity, we believe one model comparison method, comparison by Bayes factor (Jeffreys,
1961), is superior because it (a) directly provides a measure of evidence for models, and
(b) is the unique, logical resultant of applying Bayes’ Rule to model comparison.

Although Bayes factors are ideal, they are associated with two issues. First, the Bayes
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factor is sometimes difficult to compute, especially in hierarchical settings. Second, the
Bayes factor is integrally dependent on the prior. We and others have argued that this
dependency is necessary for valid model comparison (Gallistel, 2009; Jeffreys, 1961;
Lindley, 1957; Rouder, Speckman, Sun, Morey, & Iverson, 2009; Rouder, Morey,
Verhagen, Province, & Wagenmakers, n.d.; Wagenmakers, 2007). Nonetheless, it often is
not obvious how to structure priors to compare different nonlinear accounts of the same
phenomena. In the following, (i) we define Bayes factors; (ii) discuss some of the
difficulties in implementation including computational difficulties; (iii) mention some of
the methods of circumventing these difficulties; and (iv) describe an alternative, Deviance
Information Criterion (DIC, Spiegelhalter, Best, Carlin, & van der Linde, 2002), a less
desirable but more computationally feasible approach that may be used as a last resort.
The Bayesian interpretation of probability as subjective belief licenses the placing of
probabilities (beliefs) on models themselves. To compare two models, denoted generically
as M4 and Mg, we may place the model probabilities in ratio. The ratios
Pr(My)/Pr(Mp) and Pr(Mu | Y)/Pr(Mp|Y) are the prior and posterior odds of the

models, respectively. Bayes’ Rule for updating these prior odds is

Pr(Ma) _ f(Y | Ma)  Pr(Ma)
PriMp) ~ f(Y [Mp)  Pr(Mp)

(7)

The term f(Y | M4)/f(Y | Mp) is called the Bayes factor, and it describes the updating
factor from the data (Kass & Raftery, 1995). We denote the Bayes factor by Bap, where
the subscripts indicate which two models are being compared. The term f(Y | M4) may

be expressed as:

fY | My) = /066 LA(0,Y)r4(0)do, (8)

where L 4 is the likelihood of M4, and @ and © 4 are the parameters and parameter space,
respectively, of the model. This term is called the marginal likelihood, and it is the

weighted average of the likelihood over all possible parameter values. We use m4 and mp
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to denote the marginal likelihoods of models M 4 and M p, respectively. The Bayes factor
is
mAa

Bap=—
mp

A Bayes factor of Byp = 10 means that prior odds should be updated by a factor of 10 in
favor of model M 4; likewise, a Bayes factor of B4p = .1 means that prior odds should be
updated by a factor of 10 in favor of model M p. Bayes factors of Byp = oo and Bap =0
correspond to infinite support of one model over the other, with the former indicating
infinite support for model M4 and the later indicating infinite support for model Mp.

Bayes factors provide a principled method of inference, and advocacy in psychology
is provided by Edwards, Lindman, & Savage (1963); Gallistel (2009); Myung & Pitt
(1997); R. D. Morey & Rouder (2011); Rouder et al. (2009); Wagenmakers (2007) among
others. The are two critical issues in use: (i) the choice of priors 74 and 7, and (ii) the
evaluation of the integrals in (8), and we discussed these issues in term. First, the choice
of priors: The choice of priors will vary from situation to situation. In the case of linear
models, such as those underlying ¢-test, linear regression, and ANOVA, researchers
already know the range of plausible effect sizes. For instance, rarely do effect sizes exceed
5 or 10 in value, and we do not run experiments to search for effect sizes less than say .05
in value. These constraints may be capitalized upon to form reasonable and broadly
acceptable priors for comparisons within the linear model (see Rouder et al., 2012; Rouder
& Morey, 2012). The case for nonlinear models, however, is neither as straightforward nor
as well explored. It is an area for future work.

The second issue is the evaluation of the integral in computing the marginal
likelihoods in (8). Here, the parameter space is often of high dimension, especially in
hierarchical models where there are several parameters for each participant and item. For
example, in the subsequent recognition memory example in Section 6, there are over 2000

parameters. To compute the Bayes factor, the likelihood must be integrated across the
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whole of the parameter space, and integration across high dimensional spaces is in general
challenging. To make matters worse, the likelihood is often concentrated, and the
integrand is highly peaked. The integration often becomes a matter of finding a needle in
a multidimensional haystack. The topic of computing Bayes factors, especially in
hierarchical models, remains topical in Bayesian analysis. Fortunately, Bayes factor
computations for linear models underlying the t-test, ANOVA, and regression are well
established. Seminal work was provided by Jeffreys (1961) and Zellner and Siow (1980).
The key innovation from Zellner and Siow was specifying the problem in a manner so that
the integration over most dimensions could be done analytically in closed form. The
modern implementation of this work is provided among several others by Bayarri &
Garcia Donato (2007) and Liang, Paulo, Molina, Clyde, and Berger (2008). Our group has
translated and refined this approach, and we provide Bayes factor replacements for t-tests
(Rouder et al., 2009), statistical-equivalence tests (Morey & Rouder, 2011), linear
regression (Rouder & Morey, 2012), and ANOVA (Rouder, Morey, Speckman, & Province,
2012). We have also provided development of meta-analytic Bayes factors so researchers
can assess the totality of evidence across several experiments (Rouder & Morey, 2011;
Rouder, Morey, & Province, 2013).

Although this Bayes factor development covers a majority of statistical models used
in psychology, current computational development does not cover a bulk of the
psychological process model which tend to be nonlinear. There are a handful of advanced
techniques that are potentially applicable, and we mention them in passing. Perhaps the
most relevant is the Laplace approzimation, where the likelihood is assumed to approach
its asymptotic normal limits, and its center and spread are well approximated by classical
statistical theory. Sarbanés Bové & Held (2011) use the Laplace approximation to provide
a general Bayes factor solution for the class of generalized linear models. An alternative

technique is to perform the integration by Monte Carlo sampling, and there has been
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progress in a number of sampling based techniques including bridge sampling (Meng &
Wong, 1996), importance sampling (Doucet, de Freitas, & Gordan, 2001), and a new
variation on importance sampling termed direct sampling (Walker, Laud, Zanterdeschi, &
Damien, 2011). These techniques assuredly will prove useful for future Bayes factor
development in psychology. The final advanced technique in our survey is Bayes factor
computation by means of Savage-Dickey density ratio (Dickey & Lientz, 1970; Verdinelli &
Wasserman, 1995) which has been imported into psychology by C. C. Morey, Cowan,
Morey, & Rouder (2011); Wagenmakers, Lodewyckx, Kuriyal, & Grasman (2010); Wetzels,
Grasman, & Wagenmakers (2010). Under appropriate circumstances, this ratio is the
Bayes factor and is convenient to calculate (see Morey, Rouder, Pratte, and Speckman,
2011). Wagenmakers et al. (2010) and Rouder et al. (2012) show how the Savage Dickey
ratio can be used in the comparison of hierarchical models of psychological process, and
Rouder et al. uses it to discriminate between the power law and exponential law of
learning in hierarchical settings.

Even though there has been notable progress in developing Bayes factor solutions,
there are several cases without such development, and, at present, Bayes factors are
simply not available. For these cases, we have a backup, inference by deviance information
criterion (DIC, Spiegelhalter et al., 2002). DIC is a Bayesian analog to AIC designed for
hierarchical models. Unlike AIC (and BIC), DIC accounts for the flexibility of priors, and
penalizes models with more flexible priors more heavily than those with more constrained
priors. Such behavior is useful for hierarchical models where increased prior constraint is
often accompanied by an increased number of parameters. The main advantage of DIC is
computational ease; it is often computed in the same MCMC chain used to compute
posterior beliefs about the parameters. The disadvantage is one of principle and
calibration. DIC shares a calibration with AIC, and like AIC, tends to penalize flexibility

too lightly (Rouder et al., 2009), especially for large sample sizes. The argument in favor
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of BIC over AIC by Raftery can be applied to favor Bayes factor over DIC. Unlike Bayes
factor, which is a principled direct result of Bayes’ Rule, DIC is best viewed as a heuristic
motivated by out-of-sample concerns. We use DIC only as a matter of last resort, and

recommend Bayes factors be used without qualification when they are available.

Hierarchical Models For Assessing Subliminality

It is widely believed that a large portion of human cognition is unconscious
(A. G. Greenwald, 1992). This unconscious cognition can manifest itself in many ways: for
instance, we may have unconscious goals and motivations; we may be unaware of the
effects of stimuli on these goals and motivations; we may even perceive and be affected by
stimuli of which we are unaware. One example of this last category is the popular myth of
subliminal advertisements in movie theaters: advertisement images were purportedly
presented so quickly as to be consciously imperceptible, nonetheless these images
supposedly changed the subsequent behavior of movie-goers by causing them to buy
expensive snacks. This myth has been debunked (Rogers, 1992).

The fact that subliminal advertising was debunked does not mean that under
controlled circumstances psychologists could not observe similar (if smaller) effects. In
fact, many such claims have been made with demonstrations of subliminal priming (for
examples, see Dehaene et al., 1998; Finkbeiner, 2011; A. Greenwald, Klinger, & Schubh,
1995; Merikle, Smilek, & Eastwood, 2001; Naccache & Dehaene, 2001). A subliminal
prime is one that cannot be perceived, and yet has an effect on subsequent behavior. To
answer the question of whether subliminal priming exists, one needs to show both that a
prime cannot be identified at a rate greater than chance, and that this prime nonetheless
affects behavior.

The priming task we model is a numerosity decision task. Participants are shown

target numerals between 2 and 8 and judge whether the target is greater than or less than
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5 in value. Preceding these targets are quickly-presented-and-subsequently masked prime
numerals. When the prime has the same status as the target, that is, both are less than
five or both are greater than five, responses are known to be speeded relative to the case
where the prime and target do not have the same relation to five (e.g., Dehaene et al.,
1998; Naccache & Dehaene, 2001; Koechlin, Naccache, Block, & Dehaene, 1999; Pratte &
Rouder, 2009). The critical question is whether this priming persists even for
presentations that are so fast that participants’ ability to assess the prime’s relation to
five is at chance level.

We focus here on the difficult part of assessing subliminal priming: the assessment
of whether a prime is identified at chance or above chance. Let p; denote the true
probability correct for the ith participant. Primes are subliminal for the ¢th participant if
true performance is at chance, that is, if p; = .5. One approach to assessing subliminality
is to perform a null hypothesis significance test on the observed proportions against the
null hypothesis that average performance across participants is at chance. If y; and N; are
the number correct and the total sample size for participant i, and ¢; = y;/N;, we might
test the hypothesis that i, = .5. If the sample sizes IV; are reasonably large and
approximately the same, then ¢ will be approximately normal, and we can apply a t test
against p, = .5. If the ¢ test is not statistically significant, we conclude that performance
is at chance. This logic has been used in several influential studies in the subliminal
priming literature (Dehaene et al., 1998; Murphy & Zajonc, 1993).

There are at least two major flaws with this approach. First, there is the issue of
acceptance of the null hypothesis. The t test essentially assumes that all participants are
performing at chance unless there is sufficient evidence against that hypothesis. Thus,
researchers who wish to show subliminality have an incentive to underpower their designs;
after all, with sufficiently small sample sizes even very good average performance can be

claimed to be subliminal simply because there is not enough evidence against it. For this
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reason, a null result from a null hypothesis significance test can not be used to argue for
the null hypothesis itself. We will use a Bayesian approach to overcome this fundamental
limitation.

The second major flaw with this ¢ test approach is a failure to properly separate
between-participant and across-participant variability. Consider the sources of variability
in estimated performances ¢;: the statistic can vary due to natural sampling variability in
the task, but also because people vary in their performance. We can reduce the first
source of variability by increasing V;, but not the second. Consider the extreme case
where we have two participants, and they perform an arbitrarily large number of trials.
Suppose that g1 = .6 and ¢o = .9. We know that both participants are above chance with
near-perfect certainty as IV; — oo, yet, we will always conclude that all participants are at
chance because with two participants, the ¢ test will not lead to a rejection of the null.

The failure to account for variability across participants leads not only to spurious
acceptances of the null, but to spurious rejections as well. For example, suppose that to
avoid the power problem outlined above, we obtain a large sample of participants.
Suppose 99% truly perform at chance, and 1% of the population performs above chance at
p =.75. Although 99% of our population is appropriate for assessing subliminal priming,
we are guaranteed to reject all participants as we increase our sample size, because the
true average performance is above 0.5.

To make these problems concrete, we consider data from a subliminal priming
experiment reported in Rouder, Morey, Speckman, & Pratte (2007). In this experiment 27
participants performed 288 trials in a prime identification task. The primes were displayed
briefly, only 22 ms, and were forward and backward masked. Performance was generally
quite poor, with an average proportion correct of .53. A classical analysis of the accuracies
reveals that average accuracy is significantly different from .5 (ta6 = 2.7,p = 0.011) with a

95% CI of (0.507,0.551). Yet, a more complex story unfolds when participant variability is
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examined (see Figure 6A). Although the majority of participants’ observed accuracies are
clustered around .5, there are two who score substantially higher than the rest. Under the
logic outlined in the previous paragraphs, we would throw out the entire sample, even
though the majority of participants’ observed accuracies are concordant with chance
performance. Instead, in the next section we present a hierarchical approach that
overcomes this issue by modeling participant variability in assessing the subliminally of

primes.
A Hierarchical Model

Our goal is to specify models of accuracy that include a psychological threshold. If
activation from the stimulus is lower than this threshold, then performance is at chance.
Conversely, if activation exceeds this threshold, then performance is above chance. The
hierarchical model presented below is from Rouder, Morey, et al. (2007). At the first level
of the model, we link the observed number correct y; for each participant with an

underlying true parameter, p;:
iid 1. .
y; ~ Binomial(p;, N;)

A hierarchical model is developed by specifying distributions on the individual
performance parameters. In our case, we must carefully consider the parent population for
the p;s. Since p is restricted to [0, 1], it is inappropriate for a traditional normal
population. Logit and probit models specify transformations of p into (—oo, 00), making
normal population distributions possible. For our purposes, however, these
transformations are inappropriate because they allow true accuracy to be below p = .5.

Instead, we use a half-probit transformation that restricts true accuracy to p > .5:

pi =
.5 z; <0
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where @ is the CDF of the standard normal distribution. Rouder, Morey, et al. (2007)
called this function the mass-at-chance (MAC) link, due to the fact that it allows
participants to have true performance p = .5. We call x; a “latent ability” because it
indexes a person’s ability even when p; = .5. Figure 6B shows the relationship of latent
ability to true accuracy. Consider two participants whose latent abilities are z; = —.01
and xo = —2. Participant 1 is very near the threshold of x; = 0; perhaps a small increase
in the duration of the prime stimuli would lead this participant to discriminate its
less-than-five status more often than chance. Participant 2, however, is very far the
threshold, and may need a larger increase in duration than Participant 1 to achieve
above-chance performance.

The second level of the hierarchical model may be specified by placing a population

distribution on the latent ability parameters:
iid 2
x; ~ Normal(u,o?)

The parameters i and o2 together define the proportion of the participants whose
performance is at chance. At the first level of the hierarchical model, we linked the
observations with individuals’ parameters; at the second level of the hierarchical model,
we described how the individuals’ parameters were distributed in a population. At the
third and top level of the hierarchical model, we specify prior distributions for the
parameters of the population of participants. There is some information for this
specification from the context. In subliminal priming experiments, the goal is to make the
primes difficult to see. It is therefore reasonable to place an informative prior on p that is
centered on the value of 0:

p ~ Normal(0, 1)

There is also natural constraint from the experimental context on parameter o. If o is too

large, then bimodal distributions on p; are likely with modes at chance and at ceiling. To
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avoid bimodal distributions on performance, but still allow substantial variability across

participants we choose a uniform prior on o:
o ~ Uniform(0, 1)

With all levels of the hierarchical model specified, joint and marginal posterior
distributions may be computed. Of particular interest is the marginal posterior

probability that the ith participant is performing at chance:
wi=Pr(z; <0|Y)

If this posterior probability is sufficiently high, then we should retain this participant to
assess whether the primes truly influence judgments about the target. Also of interest are
the marginal posteriors of the population level parameters y and o. A convenient statistic
is the probability that any participant drawn from the population-level distribution is at

chance. We denote this probability 7, and it is

=o(-2)

For example, if n = .8 for a given stimulus duration, then we expect that 80% of people
will be at chance.

We can compute the marginal posterior distributions in a variety of ways: Rouder,
Morey, et al. (2007) derived full conditional distributions and implemented a Gibbs

sampler in R. Here, we present BUGS code model specification:

model {
for( i in 1:M ){
# Level 1: Binomial

yli] 7 dbin( p[i], N[i] )
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# Transformation between p and z, level 1

pli] <- phi( x[i] = step( x[i] ) )

# Level 2: population on the latent abilities

x[i] 7 dnorm( mu, precision )

# Level 3: Prior parameters

mu -~ dnorm( 0, 1 )

sig ~ dunif( 0, 1 )

# BUGS wuses precision , not std dev, to define normal

precision <- 1 / ( sig * sig )

We fit the hierarchical model to the data of Rouder, Morey, et al. (2007) that is
shown in Figure 6A. Figure 6C shows the resulting posterior distribution of the proportion
of population judged to be performing at chance (n). Most of the mass is above .5,
indicating that well over half of the population has performance at chance. Of particular
interest are the posterior probabilities that the ith participant performs at chance (w;).
Figure 6D shows the relationship between each participant’s observed accuracy y;/N; and
the corresponding posterior mean of w;.

One approach to selecting participants for subliminal priming analysis is to choose a
criterion ¢ such that if w; > ¢, participant i is categorized as “at chance”. The horizontal
line in Figure 6D at .95 shows one possible criterion. The three points above the horizontal
line represent participants whose priming effects we might examine; if we found evidence

of priming for those participants, it could be used as evidence for subliminal priming.
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The hierarchical model outlined above is quite simple, and allowed us to categorize
by the plausibility that their ability correspond to at-chance levels given the assumptions
of the model. Perhaps from a more broad perspective, it may viewed as a psychometric
model of performance. The key innovation is the use of a half-probit link that accounts for
a true psychological threshold. This threshold, unlike usual operationalizations in
psychophysics, describes the point on latent ability where performance first rises above
chance. One reasonable concern is the role of parametric assumptions, and the most
salient is the half-probit mapping from latent ability to probability. To model the
threshold, it seems necessary to have a link that maps many latent ability values to chance
performance, but there are many alternatives to the half-probit link, such as the CDF of a
Weibull which meet this requirement. We chose the half-probit for computational
convenience, but there remains the question of whether this link is reasonable. Moreover,
it is a somewhat open question of whether different links, such as that from the Weibull
will lead to different assessments of which participants are at chance.

Unfortunately, it seems difficult to assess the fit of the half-probit and the
dependence of conclusions of subliminality to parametric assumptions in typical priming
studies. The reason for this difficulty is that in typical studies, many participants perform
at near chance levels, and thus their performance offers little in the way of information to
determine whether the link is reasonable. A better approach may be to change the
paradigm to allow for a greater range of performance across individuals. In the current
paradigm, stimulus difficulty reflects the duration of presentation, which was set to 22ms.
In subsequent experiments (Morey et al., 2008), we asked participants to identify stimuli
presented at durations from 17 ms to 167 ms. The model extension to this case is covered

next.
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Ezxtending the hierarchical model

Extending the paradigm and model to multiple stimulus durations affords several
advantages including the ability to state evidence that participants are at chance at
specific durations. Participants who are particularly good at identifying the primes may
require very short durations for chance performance, whereas participants who are not as
good may be at chance to a wider range of prime durations. A second advantage is that
the extended model covers the full range of performance of individuals across stimulus
duration, and in this regard, may be treated as a psychophysical and psychometric model.
The question of how well the probit-link is in accounting for performance may be assessed.

R. D. Morey, Rouder, & Speckman (2008) and R. D. Morey, Rouder, & Speckman
(2009) developed several models that allow for multiple prime duration conditions. To
demonstrate how hierarchical models can be naturally extended, we present the model of
R. D. Morey, Rouder, & Speckman (2008) here, which is the simplest of the set. Consider
an experiment in which J participants attempt to identify masked primes in I
stimulus-duration conditions. In condition ¢, participant j performs N;; prime
identification trials, of which y;; are correct. Figure TA shows average accuracies in a
prime identification task with I = 6 conditions (17ms, 25ms, 33ms, 58ms, 100ms, and
167ms). Identification for the shortest prime duration was extremely poor at 48%; the
longest duration prime, however, was correctly identified an average of 85% of the time.

The first level of the extended hierarchical model is essentially the same as before,
with the exception that now we index both participants and conditions. Observed

accuracy for the jth participant in the ith condition, y;;, is distributed as a binomial:
iid 1. .
yij ~ Blnomlal(pij, Nij)a

and, as before, we link true accuracy p with latent ability x;; through the half-probit
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transformation:

P (a:,]) Tij Z 0

bij =

.5 Tij < 0
In the previous model, all latent abilities  were drawn from a normal parent distribution.
In this case, however, it is desirable to have this parent distribution depend systematically
on the duration condition. We place an additive model on latent ability at the second
level:

Tij = Wi + Q.

where p; is the average ease with which primes in condition 4 are identified, and «; is the
identification ability of the jth participant. We have thus reduced the number of
parameters underlying latent ability from 45 to ¢ + j. This type of reduction in complexity
is one of the strengths of hierarchical modeling.

We assume that the participant ability parameters «; are drawn from a normal
population:

aj | o2 w Normal(0, 02).

a; can thus be interpreted as the random effect of participant j. We place an inverse

gamma prior on the unknown variance 03:
o2 | a,b ~ Inverse Gamma(a, b)

When parameters a and b are chosen to be small (e.g., 0.01), this prior is less constraining
than the uniform prior on ¢ in the Rouder, Lu, et al. (2007) model. We can use a less
constraining prior here because the data extend across multiple conditions including those
where performance is definitively above chance.

The condition effect parameters p can be interpreted as fixed effects; we thus place
independent priors on each p:

i w Normal(0, 1),
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where the prior parameters were selected to be similar to those for y in the

previously-presented model.

The full model can be described in the BUGS language:

model {
for( j in 1:J ){

for( i in 1:T ){

# Binomial, level 1

yli,j] 7 dbin( p[i,j], N[i,j] )

# Transformation between p and z, level 1

pli,j] <= phi( x[i,j] * step( x[i,j] ) )

# latent ability is nmow a linear combination
# of mu and alpha

x[i,j] <~ mu[i] + alphalj]

# Level 2 — define alpha
for( j in 1:J ){

alpha[j] = dnorm(0, precisionAlpha)

# Level 2 — define mu

for(i in 1:1 ){
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mu[i] ~ dnorm(0, 1)

# Prior parameters, level 8§

precisionAlpha 7 dgamma(aAlpha, bAlpha)

Figure 7, Panels B and C, show the results of fitting the model to the data shown in
Panel A. Panel B shows the posterior probability on the proportion of participants in the
six conditions who perform at chance. At the shortest duration, nearly all participants are
predicted to be at chance; at the longest, the proportion at chance is surely less than 10%.
Panel C shows the posterior probability that true performance is at chance for each
participant by condition combination, that is, Pr(x;; < 0|Y’). Each line represents a
participant, and each point on the line represents a condition.

As one would expect, the posterior probability of chance performance decreases for
all participants as the prime duration increases. For most participants, the decrease
occurs in a graded way. Interestingly, there are several participants whose curve is
non-monotonic; that is, for some posterior probability by observed performance pairs,
posterior probability increases as performance increases, which is the opposite of what one
would expect. This is due to the fact that the additive nature of the model enforces the
ordering of true performance to be the same for all participants across conditions. The
model does not allow, for instance, one participant to improve their true performance as
duration is increased from 25ms to 33ms, and another to get worse. However, because
observed performance is subject to binomial noise, differences in performance across
conditions may, for some participants, be the opposite of what one would expect. The

hierarchical model allows us to use information from all participants to infer what the
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ordering should be, and enforce it for all participants.

The extension of the hierarchical model — specifically, the addition of multiple
conditions — allows for a more constrained, more easily tested model. In the simple
hierarchical model, most participants were expected to be near chance performance,
leaving us very little information by which to falsify the model. The extended model
predicts a pattern of data for each participant across stimulus durations, and when this
pattern is violated, it will be apparent.

Consider the participant represented by the right-most line in Figure 7C. In one
condition, this participant is performing at an accuracy of .72, but the model says that
this participant is almost surely at chance in that condition. This strange result led
R. D. Morey et al. (2009) to further extend the model to allow for individual participant
slopes:

zij = 0 (ki + o).

This model allows participants to improve at different rates as the stimulus intensity is
changed, which improves model fit for some participants. Given the previous development,
such an extension is conceptually straightforward. It requires an additional prior for 6;
R. D. Morey et al. (2009) chose a normal distribution truncated below at 0, to require
that 6 be positive, and thus all participants must have the same ordering of true
performance across conditions. The model can be easily defined in the BUGS language
and fit with WinBUGS or JAGS.

The current set of hierarchical models are based on IRT type formulation with a
novel link to account for thresholded behavior. Unlike IRT models, however, the effect of a
person is modeled with two parameters while the effect of items (stimulus durations in
this case) is modeled with just one. In this sense, these models may be considered perhaps
the first set of hierarchical psychophysical models. We believe that such models may be of

great use: they allow researchers to measure a truly at-chance threshold level of
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performance across a large number of individuals with a limited numbers of experimental
trials.

Subliminal priming remains a controversial topic. To assess whether it exists,
R. D. Morey (2008) asked participants to both identify primes, and then identify primed
targets. He first used the hierarchical model in R. D. Morey et al. (2009) to select
participant-by-duration combinations for which it was more likely that latent ability was
below rather than above chance. For these combinations, however, there was about 5-to-1
evidence by Bayes factor for a null priming effect on the time to identify primed targets.
Hence, once one is somewhat sure that prime identification is at chance, the priming effect
disappears! One notable study that contradicts this claim, however, comes from
(Finkbeiner, 2011). Finkbeiner used two stimulus durations in a word priming experiment,
and used the above extended hierarchical model to select participant-by-duration
combinations as being at chance. With these combinations, Finkbeiner found about
10-to-1 evidence by Bayes factor for a priming effect. The approaches used by Morey and
Finkbeiner provide for more rigorous assessment of subliminality and subliminal priming
than previous methods, and further research with them will be a valuable part of

unraveling the puzzle if and when subliminal priming occurs.

Hierarchical Models For Signal-Detection Experiments

In this section, we demonstrate how hierarchical modeling strengthens the
inferential link between theory and data in understanding human memory. We focus on
recognition memory, and a prevailing theoretical question is whether recognition memory
is mediated by a single strength process or by the two processes of recollection and
familiarity (Mandler, 1980). Aggregation, unfortunately, is the norm in recognition
memory experiments. In these experiments, the basic unit of data is a dichotomous

outcome. Either a participant indicates a test item is old or new, and to form hit and false
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alarm rates, these outcomes seemingly must be aggregated across individuals or items. In
the following section, we show how this aggregation may gravely distort conclusions about
processing. We then introduce a hierarchical model that simultaneously accounts for
participant and item variability, mitigating the need for aggregation. This hierarchical
model provides for more valid assessment of processing, and we highlight our findings

about the number and nature of processes underlying recognition memory.

Consequences of Aggregation In Memory Fxperiments

Recognition memory data have traditionally been modeled using the theory of
signal detection (Green & Swets, 1966; Kintsch, 1967). Each tested item is assumed to
generate some amount of mnemonic strength, which is graded and varies from trial to
trial. This strength is compared to a criterion; an “old” response is produced if this
strength is greater than the criterion, and a new response is produced otherwise. In the
most conventional approach, called equal variance signal detection, the strength
distribution for new items is a standard normal with a mean of 0 and variance of 1, and
the strength of new items is shifted by an amount d’, which serves as a sensitivity

parameter. The corresponding hit and false alarm rates are given by

ho= @(d-0),

;o= e(-0),

where ® denotes the cumulative distribution function (CDF) of the standard normal
distribution, and C denotes the criterion. If hit rates are plotted as a function of false
alarm rates for many values of the criterion, the resulting receiver operating characteristic
(ROC) curve can be used to asses the veracity of the signal detection model of memory. In
particular, this model predicts ROC curves that are curvilinear, as has now been observed

in many recognition memory experiments. In addition, this model predicts that the ROC
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curve will be symmetric about the negative diagonal. The solid black lines in Figure 8A
correspond to equal-variance signal detection ROCs for d' = 0.7,1.6, and 2.5.

The symmetric ROCs in Figure 8 are not characteristic of empirical ROC curves
observed in recognition memory tasks. In almost all studies, observed ROCs are
asymmetric with higher hit rates than expected for small values of false alarms (see
Glanzer, Kim, Hilford, & Adams, 1999, for a review). This asymmetric pattern can be
seen in the dashed line in Figure 8. There have been several models proposed to account
for this asymmetry, including signal detection models with strength distributions of
unequal variance across new and studied items (e.g., Ratcliff, Sheu, & Grondlund, 1992),
and signal detection models that assume non-gaussian strength distributions (e.g.,
DeCarlo, 1998; Pratte & Rouder, 2009). Alternatively, Kellen, Klauer, & Broder (2013)
argue that this asymmetry, indeed the curvature in general, is a result of aggregation and
the true underlying curves are straight lines in accordance with a discrete-state model.
Perhaps the most influential account, however, is a dual-process model proposed by
Yonelinas (1994) and Yonelinas & Parks (2007). This model assumes that the recognition
of a previously-studied item can come about by one of two separate processes: The item
can be explicitly recollected in an all-or-none fashion, or failing recollection, it may be
recognized based on its level of familiarity. Familiarity for both new and studied items
follows the equal-variance signal detection model presented above. The hit and false alarm

rates for this mixture model are given by:

h = R+(1-R)x®(d—-0C),
where d’ and C' are parameters of the signal detection process governing familiarity, and R

is the probability of explicit recollection. The light, thick line in Figure 8A shows a typical

ROC prediction for this model (R = 0.29, d’ = 1.0). If R = 0, then the model reduces to
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the equal-variance signal detection model, and the resulting ROC is symmetric.
Recollection, R, has a one-to-one correspondence with the degree of asymmetry in the
ROC curve. Accordingly, the ubiquitous finding of asymmetry in ROC curves is consistent
with the presence of two processes mediating recognition memory.

We show here the potential distortions from aggregation in measuring the symmetry
of ROC curves. Let’s consider the role of item variability, as items are typically
aggregated across to form hit and false-alarm rates. Suppose, for demonstration, that
there is no recollection. That is, the data from each item follows an equal-variance signal
detection model. Let’s also suppose for demonstration that there are two items: an easy
item with a true d’ = 2.5, and a harder one, with true d’ = 0.7. The ROCs for these items
are shown as the solid lines labeled “Easy” and “Hard” in Figure 8A. Now, suppose the
hit and false alarm events are averaged over these items. It is hoped that the resulting
ROC would reflect the underlying structure, and perhaps be the middle solid line, which is
the signal detection model with d’ = 1.6, the average d’ of the easy and hard items.
Unfortunately, this ROC does not result from aggregating data. Instead, the dashed line
occurs, and this line has a substantial degree of asymmetry. This asymmetry is distortion;
an artifact of aggregation, and is not at all a signature of cognitive processing. Perhaps
most unsettling is that this distortion is asymptotic — it will remain regardless of how
much data are collected (Rouder & Lu, 2005). The dashed line is alarmingly close to the
ROC prediction for the two-process model, and researchers who fit models to data
aggregated across items run the risk of concluding that there are two processes with
substantial recollection, when in fact there is only one process.

The question of whether the data are better described by the dual-process model or
by simpler models is important and topical. It cannot be answered with data aggregated
across items or individuals, as this aggregation may gravely distort the ROC patterns. To

assess whether the asymmetry in ROC curves is a true signature of cognitive process or an
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artifact of aggregation,we have constructed a series of hierarchical models (R. D. Morey,
Pratte, & Rouder, 2008; Pratte et al., 2010; Pratte & Rouder, 2011). In this chapter, we
use a hierarchical dual-process model (Pratte & Rouder, 2012) based on Yonelinas’ model
to assess ROC asymmetry. The degree of asymmetry in this model is indexed by the
recollection parameter R, with R = 0 corresponding to the symmetric curves and greater
values of R corresponding to greater degrees of asymmetry. The main feature of the model
is that it accounts for variability across individuals and items, and there is no need to
aggregate data for analysis. Consequently, estimates of recollection, which index

asymmetry, are not distorted by these nuisance sources of variation.

A Hierarchical Dual-Process Model of Recognition Memory

Consider an experiment in which each of ¢ = 1,..., I participants is tested on each
of j=1,...,J items. For each participant, some of these items were indeed studied, while
the rest are novel. The participant responds by endorsing one of K confidence ratings
options. In the signal detection approach, the multiple ratings options are modeled with
multiple criteria: there are K — 1 criteria as shown in Figure 8B. In constructing the
hierarchical model, it is useful to reparameterize the signal detection model such that one
of the criteria is set to 0, and the center of the new-item distribution is free. We let d(*)
and d(™ denote the centers of studied and novel-item distributions, respectively.

The hierarchical model is constructed by specifying parameters for each
participant-by-item combination. Let R;; be the participant-by-item recollection value,
and let dz(;) and dZ(]T-L) be the participant-by-item values of the centers of the familiarity
distribution for studied and novel items, respectively. The resulting hit and false alarm

probabilities for each participant by item combination are

hijkz = Rij + (1 — Rij) x O (dgjs) — ik) ,

far = @ (d = Cu),
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where f;;, and h;j;, are the false alarm and hit rates for the ith person responding to the
jth item in the kth confidence rating. Individual criteria parameters Cj; are also free to
vary across participants, reflecting individuals’ response biases for particular confidence
responses. The familiarity component of the model is depicted in Figure 8B.

In this model there are separate parameters for every participant by item
combination for novel-item familiarity, studied-item familiarity and recollection. However,
because each participant is tested on each item only once, there are no participant-by-item
replicates in the data, and thus some constraint is needed. We assume that parameters are
additive combinations of person and item effects in order to provide this constraint. The

new-item familiarity follows:

dp) = ol g,

(

where (™ denotes a grand mean, ain) denotes participant effects, and B](n) denotes item

effects. Rather than place participant and item effects on the mean of studied-item

(s)

/
i ]

i the difference between the studied-item and

familiarity d;.’, we place them on d

new-item distributions:
d d
log (d;j) = uD 4+ a§ ) ﬁj( ),

Placing an additive model on the log of d;j constrains the increase in sensitivity due to
study to be positive for all participant by item combinations. Finally, the probability of

recollection for each person and item is given by:
o (Ry) = ' +alP 4 BJ(R),

where the inverse of the normal CDF (quantile) function is used to constrain the sum of
participant and item effects to be between 0.0 and 1.0, as recollection is a probability.
Although these additive structures greatly simplify the model, there are still a large

number of parameters to be estimated. Further constraint is achieved by placing
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hierarchical structures on participant and item effects. For example, new-item familiarity

values follow:

al” o~ Normal(0, 02)

B](-n) ~ Normal(0, cr%).

where the variance parameters are estimated from the data, and provide measures of
participant and item variability in new-item familiarity. Similar hierarchical structures are
placed on participant and item effects in studied-item familiarity and recollection,
providing for efficient parameter estimation even with small numbers of participants and

items.

Applications of the Hierarchical Memory Model

The hierarchical model allows for the estimation of underlying mnemonic processes
from recognition memory data without recourse to aggregation and the accompanying
distortions. The presented model is discussed in detail in Pratte & Rouder (2011, 2012),
and estimation may be performed with the R package HBMFEM, available on CRAN.

One of the main questions is whether the asymmetry in ROC curves is truly the
result of cognitive processing, such as all-or-none recollection, or reflects distortion that
results from averaging data over participants or items, as is demonstrated in Figure 8.
This question can be answered by consideration of the mean recollection parameter (,u(R)),
a measure of ROC asymmetry that in the hierarchical model is uncontaminated by
participant and item variability. If posterior beliefs are centered far from zero, then the
ubiquitous ROC asymmetry is indeed a cognitive signature rather than an artifact. We
applied the model to Experiment 1 in Pratte et al. (2010), a large recognition memory
experiment in which 94 participants were tested on 480 items. The resulting posterior
distribution for the mean recollection parameter (u(%)) is shown in Figure 9A. All of the

posterior mass is substantially above zero, implying that ROC asymmetry is present even
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when participant and item variability are modeled. This asymmetry is seemingly a
cognitive signature rather than an artifact of aggregation (see R. D. Morey, Pratte, &
Rouder, 2008; Pratte et al., 2010), and should be treated as an important benchmark in
theory construction.

Although both the aggregated and hierarchical analysis of these data provide the
same qualitative conclusion of ROC asymmetry, aggregation nonetheless leads to distorted
parameter estimates and a dramatic overestimation of precision of these estimates.
Familiarity, for example, is overestimated by 15% when data are aggregated over both
participants and items, compared to mean familiarity in the hierarchical model. More
alarming is the dramatic overestimation of precision from aggregation. For example, the
95% credible interval on mean recollection in Figure 9A is 2.7 times larger than the 95%
confidence interval resulting from the aggregated analysis. This overstatement of precision
from aggregation is a direct result of mismodeling multiple sources of variation and is well
known (Clark, 1973; Raudenbush & Bryk, 2002; Rouder & Lu, 2005). Conversely the
wider credible intervals from the hierarchical estimates directly represent the uncertainty
from accounting for multiple sources of variation. The differing degrees of precision has
dramatic effects on assessing whether mean recollection or familiarity changes with
condition variables, and it is possible that previous demonstrations of effects with
aggregated data are overstatements of the true significance of condition effects (Pratte &
Rouder, 2012).

The above assessment shows that ROC asymmetry is a signature of the cognitive
processes subserving recognition memory, but does not necessarily imply that recognition
memory is mediated by recollection and familiarity. The hierarchical model provides
additional insights because it provides for separate assessment of recollection and
familiarity for each individual and for each item. If recollection and familiarity are

statistically independent processes, then the recollection and familiarity across individuals
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should be uncorrelated; likewise, recollection and familiarity across items should be
uncorrelated. The dark points in Figure 9B show the relationship between recollection and
familiarity for people (az(r) vs. agd)), the light points show the relationship for items (ﬁj(.T)
vS. BZ-(d)). Two trends are evident. First, there is substantial variability in both
individuals’ mnemonic abilities and how easily items are remembered. Second, there is
substantial correlation: people with high recollection also have high familiarity (r = .48),
and items with high recollection also have high familiarity (r = .49). Pratte & Rouder
(2011) found that the degree of correlation is statistically significant, but, nonetheless, a
model with only shared variability does not do as well as a model with both shared and
unique variability for recollection and familiarity.

One of the main sources of evidence for two separable processes has been the
demonstrations of dissociations across experimental conditions. One classic dissociation is
between a levels-of-processing manipulation and a perceptual-feature manipulation. Deep
levels of study, such as producing a related word to an item at study, should lead to an
increase in recollection over shallow levels of study, such as counting vowels in study
items. Conversely, changing perceptual features between study and test, such as font or
color, should attenuate familiarity rather than recollection. Some researchers have had
success in generating these dissociations, but they seemingly occur only under special
circumstances. In particular, perceptual effects are difficult to obtain (Hockley, 2008;
Mulligan, Besken, & Peterson, 2010; Murnane & Phelps, 1995), and tend to occur only in
experiments with poor overall performance (e.g. Boldini, Russo, & Avons, 2004).

In Pratte & Rouder (2012), we used the hierarchical model to assess recollection and
familiarity across 13 conditions in 4 experiments. Our manipulations produced effects that
were as large or larger than previous ones in the literature. Figure 9C shows joint
posterior distributions of mean recollection as a function of mean familiarity across the

conditions. Each ellipse is a 95% credible region. If there was evidence for two distinct
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processes, then these conditions should lie in a plane rather than on a monotonic curve
(see Bamber (1979), and Newell & Dunn (2008) for an overview of the logic in interpreting
such state-trace plots). Note that the curve is not incompatible with a double dissociation:
some pairs of points differ more in familiarity than recollection (see the poorest
performing points), whereas others differ more in recollection than familiarity (see the
best performing points). Yet, all of the condition effects can be connected by an increasing
curve, suggesting that a single factor, the location on the curve, is needed to account for
these data. We think the relative attenuation of recollection in conditions with poor
performance reflects the nature of ROC space. When performance is poor, the ROCs are
near the diagonal and it is easier to detect small overall sensitivity effects (familiarity)
than to detect small changes in asymmetry (recollection). Hence, even though our data
has degrees of dissociation as large as any in the comparable literature, they are more

compatible with a single-process approach than a dual-process approach.

Concluding Remarks

In this chapter, we have shown that while experimental psychologists have a rich
theoretical and experimental tradition, the link between theory and data often presents
difficulties in real-world contexts. These difficulties arise because theories are nonlinear,
and there is often substantial nuisance variation across individuals and items. If these
sources of nuisance variation are not appropriately modeled, they will distort the
assessment of the underlying cognitive signatures, and lead to erroneous conclusions about
theory. These potential problems occur across psychology, and here we have presented
examples in assessing learning, subliminal priming, and recognition memory.

We advocate a Bayesian hierarchical approach for linking theory and data. These
models provide for the simultaneous assessment of nuisance variation and variation from

the target cognitive process of interest. They not only allow researchers to uncover the
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rich cognitive structure in their data without aggregation artifacts, but allow for an
understanding of how this structure varies across individuals and items.

In this chapter, we have tried to focus on the types of problems hierarchical
modeling can solve, as well as an introduction to Bayesian probability. We have avoided
the nuts and bolts of estimation, and this avoidance leaves open the question of how
interested researchers can develop and analyze their own models. There are now several
excellent texts on Bayesian modeling that include development of Bayesian hierarchical
models, and advanced texts include Gelman, Carlin, Stern, & Rubin (2004) and Jackman
(2009). More recently there have been tutorials and texts specific for psychology including
Rouder & Lu (2005), Kruschke (2011), and the forthcoming book by Lee & Wagenmakers
(2013). Here, we tackle more global questions about how researchers should learn
Bayesian hierarchical modeling.

One question that arises is about software: which language and packages should
researchers use? We think researchers should invest in three classes of languages. At the
highest level, there are specialty languages developed especially for Bayesian hierarchical
modeling, of which JAGS (Plummer, 2003) and WinBUGS (Lunn et al., 2000) are the
most popular. These languages allow researchers to specify models and priors as input in
a natural random-variable notation, and provide samples from posterior distributions as
output. When they work, they often work well and save much development time.
Therefore, these specialty languages serve as an excellent first option, and, importantly,
require little special knowledge above and beyond the skills needed to specify models.
Unfortunately, as general-purpose sampling solutions, they sometimes do not work well in
specific situations: they may lack a feature necessary to define a model, or take an
exceedingly long time to sample5. Determining whether a specialty language such as
JAGS or WinBUGS will work is often fast and should be a first step for most researchers.

In cases where the general-purpose solutions fail, researchers may need to derive
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conditional posterior distributions, develop sampling routines, and implement them.
Data-analytic languages such as R (R Development Core Team, 2009) and MATLAB
(MATLAB, 2010) are ideal for implementation, and often contain useful routines for
MCMC sampling. Sometimes, however, the speed of R and MATLAB can be improved by
implementing the sampling in a fast, low-level language such as C or Fortran. We use
JAGS as our high-level specialty language, R as our mid-level data-analytic language, and
C as our fast, low-level language, and we routinely move between these three as dictated
by the model we wish to analyze. The hierarchical normal model and the mass-at-chance
model in this chapter are both implementable in JAGS; analysis of the hierarchical
dual-process model, however, was more convenient using a combination of R and C
routines for efficiency. Our hope is that as more researchers use hierarchical models, they
will develop the skills to go beyond WinBUGS or JAGS implementations as needed.
Perhaps the most important question is how should young scholars be trained so
that they may use Bayesian hierarchical models. In our view, it is hard to overstate the
usefulness of solid training in statistics including courses in calculus-based mathematical
statistics, linear algebra, and Bayesian analysis. We realize, that many talented students
will not have the aptitude or time for such study, and so it is worthwhile to consider
alternatives. A good course would be one that stresses the logic of modeling. This course
would focus on the basics of probability and statistics, and promote a deep understanding
of conditional probability. Course objectives would include the ability to specify models,
and write down and visualize likelihoods, and would provide an overview of the issues in
model comparison. We hope the appeal of Bayesian hierarchical models will motivate

more rigorous general statistical training in psychology.
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Footnotes

1T inear models are those where the expected value of the data is a linear function of
the parameters (Kutner, Nachtsheim, Neter, & Li, 2004). Examples include ANOVA and
regression. Nonlinear models violate this basic tenet: the expected value of the data
cannot be expressed as a linear function of parameters.

2JAGS may be obtained at http://mcmc-jags.sourceforge.net. WinBUGS and
OpenBUGS (for non-Windows operating systems) may be obtained at
http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtml and
http://www.openbugs.info/w/, respectively.

3Posterior beliefs may be computed by subtracting MCMC samples. For the mth

m)

iteration, let (™ = Bé — ﬁgm). The dotted line in Figure 5B is the smoothed histogram
of (™),
AThe posterior for this contrast is computed in MCMC as
cm = (ZZ(,uZ(;n’) - ,ugn))/l, and the solid line in Figure 5B is the smoothed histogram.
5F0rtunately, these general-purpose samplers are extensible (Lunn, 2003) and have

improved greatly in recent years. In addition, newcomers such as Stan (Stan Development

Team, 2013) show promise.
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Figure Captions

Figure 1. Estes’ (1956) example of the difficulty of linking learning-curve data to learning
theories. A. Predictions: The solid and dashed lines show predictions from the
gradual-decrease and all-at-once models of learning, respectively . B. Data form Reder
and Ritter (1992). The grey lines show the times for 15 individuals as a function of
practice; the red circles are means across individuals, and these means decrease gradually
with practice. C. Hypothetical noise-free data from the all-at-once learning model.
Individuals’ data are shown as thin grey lines. The mean, shown with red points,
nonetheless decreases gradually. This panel shows that the mean over individuals does not

reflect the structure of any of the individuals.

Figure 2. Prior and posterior beliefs from three analysts for the probability of heads. A.
Prior beliefs. Analyst I believes that all outcomes are equally plausible; Analyst II
believes that heads are more likely than tails; and Analyst III not only believes that tails
are more likely than heads, but that the coin has no chance of favoring heads. B. The

updated posterior beliefs after observing 8 heads and 4 tails.

Figure 3. Prior and posterior beliefs on u, the center of a normal distribution. A. Prior
beliefs of two analysts. B. Posterior beliefs conditional on a sample mean of Y = 95 and a
small sample size of N = 10. C. Posterior beliefs conditional on a sample mean of Y = 95

and a larger sample size of N = 100.

Figure 4. Joint prior (left), likelihood (center), and joint posterior (right) distributions
across normal-distribution parameters p and o2. Also shown, in the margins are the

marginal posterior distributions of x4 (top) and o2 (right).

Figure 5. The advantages of hierarchical modeling. A. Hypothetical data from 20

individuals each providing observations in 2 conditions. The bars show overall condition
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means; the points and lines show individual’s condition means. B. Posterior distributions
of the condition effect from Model My, the aggregation model (dotted line), Model Mo,
the cell means model (solid line), and Model My, the hierarchical model with main effects
and interactions (dashed line). Localization is worse for M; because participant variability
is not modeled. C. Solid lines show participant-by-condition point estimates from Mas; the
dotted lines show the same from My. The shrinkage in My to main effects imposed by
the hierarchal prior smooths these estimates. D. A comparison of individual-by-condition
estimates from the Mo, the cell-means model, and My, the hierarchical model with main

effects and interactions. There is modest shrinkage for extreme estimates.

Figure 6. A: Violin plot of 27 participants’ performance in a prime identification task.
The confidence interval within the violin plot is the 95% CI on the mean accuracy; the
horizontal line at 0.5 represents chance performance, and the horizontal dashed lines
bound the interval within which we would expect 95% of participants to perform if they
were truly at chance. B. The mass-at-chance link function. C: Posterior distribution of the
population proportion at chance. D: Posterior probability that individuals are at chance

as a function of their observed performance.

Figure 7. A: Mean performance by duration condition in a prime identification task.
Error bars are standard errors of the mean. B: The posterior distribution, for each
duration condition, of the proportion of the population that would perform at chance in
that condition. C: Posterior probability that individuals are at chance as a function of
their observed performance. Lines represent participants, and each point a condition. The
top/left-most point for each participant is the briefest duration condition, and subsequent

points along the lines are increasingly higher-duration conditions.

Figure 8. A. ROC curves from the equal variance signal detection model (solid black
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lines), the distorted data from this model averaged over participants (dashed line), and
the dual-process model fit to these distorted data (thick grey line). B. The signal

detection component of the hierarchical dual-process model.

Figure 9. A. Posterior distribution of mean recollection, estimated with the hierarchical
dual-process model. B. Participant and item effects in recollection plotted as a function of
effects in familiarity. C. Joint posterior distributions of recollection and familiarity for 13
experimental conditions. The line is a non-parametric fit, highlighting the monotonic

relationship between recollection and familiarity estimates.



Response Time (sec)

Practice Trials

Response Time (sec)

Bayesian Hierarchical Models, Figure 1

Response Time (sec)

Practice Trials

A H‘

Practice Trials



Density
00 05 10 15 20 25 30

04 06 0.8
Probability of Succes, p

Density

Bayesian Hierarchical Models, Figure 2

10
|

0.6
Probability of Succes, p

02 04



Density

Bayesian Hierarchical Models, Figure 3

B. C.
<| ~L
S S
©
o
™
of vl
S
<1
| o
© ™
o
N
L of
© -
- —
n, - l
ol_.--"~ - ~< o
80 90 100 110 120 85 90 95 100 105 110 85 90 95 100 105 110

Parameter

Parameter

Parameter



Parameter o2
200

400 500

300

100

Bayesian Hierarchical Models, Figure 4

Parameter p

Parameter p

Parameter p

o o
[ {8 {8
Joint Prior 0 Likelihood 0 Joint Posterior
o o
- of ot
< <
/\ ) )
L =yt {8
™ ™
/_\ i )
L o or
N N
’ : 2
L {8 I={8
— —
v
=
L ot oFr
85 90 95 105 115 85 90 95 105 115 85 90 95 105 115



Score
110 120
|

100

90

80

Bayesian Hierarchical Models, Figure 5

100 110 120
|

Score Estimate

90

A. B
s ® o
@ _ ; é\ -
2 - — e 2 g
= . a
® ~ o ’5 N
— 5 S
(o - @

a
@ o o
o
@ €
o
o
Condition 1 Condition 2
C.
g 4
g —
b
w
o W
S 2
=
©
O
M,, Cond. 1 S w
—— M,, Cond. 2 3 @
----- M,, Cond. 1 22
————— M,, Cond. 2 T
Ko}
| o
T T T T T T T T
5 10 15 20 90 100 110 120

Individual Cell-Means Estimate



Observed performance (yi/N;)

Posterior density

o
o]

o
\l

o
o

o
&)

o
~

0.2 0.4 0.6 0.8 1.0
Proportion of population at chance (n)

Bayesian Hierarchical Models, Figure 6

1.0

o o o
N o0 ©

True accuracy p

o
o

o
4]

1.0 -_‘._' ___________________________________ D

06

Pr(x;<01]Y)

0.2

0.50 0.55 0.60 0.65 0.70
Observed performance (y;/N;)



Average performance (y;/Nj)

Posterior Density

10

09t

0.8

0.7

06

0.5

04

Bayesian Hierarchical Models, Figure 7

A

50 100 150 200

Prime duration (ms)

167ms

B 1.0 [y

17ms 08 |

06

Pr(xj<0]Y)

04 r

0.2

33ms 25ms

0.0 [

00 02 04 06 08 10
Proportion of condition at chance (n)

04 05 06 07 08 09 10
Observed performance (y;/N;)



Hit Rate

0.4

0.8 1.0

0.6

0.2

0.0

b\ T T T T T
00 02 04 06 08 10

False Alarm Rate

Density

Bayesian Hierarchical Models, Figure 8

0.5

02 03 04

0.1

0.0

’_d;jkﬁ
o dfY
Ci Cp Cas Cis
| 4/ \¥
T T T T
-4 -2 0 2

Mnemonic Strength




Posterior Density

Bayesian Hierarchical Models, Figure 9

20
|

15

10
|

1
0.0

1
0.1

1
0.2

Recollection

0.3

A B. C
wlle People —
o | e ltems ) s
] & ]
. ©
< “’.E c 3
.% S .% w3
o o ©g
8 7 8
Q O] 8 -
& 37 & 9]
7 o |
3 . 3
o o
T T T T T T T T TTTTTTTTTITTTITmmmmmmmmmm T T T T T T T TTTTTTTTTITTImmmmmmmm
0.4 0.2 0.5 1 2 005 01 0.2 0.5 1 2

Familiarity (d') Familiarity (d')



