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Separating Mnemonic Process From Participant and Item Effects in the
Assessment of ROC Asymmetries
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One of the most influential findings in the study of recognition memory is that receiver operating
characteristic (ROC) curves are asymmetric about the negative diagonal. This result has led to the
rejection of the equal-variance signal detection model of recognition memory and has provided moti-
vation for more complex models, such as the unequal-variance signal detection and dual-process models.
Here, the authors test the possibility that previous demonstrations of ROC asymmetry do not reflect
mnemonic process but rather reflect distortions due to averaging data over items. Application of a
hierarchical unequal-variance signal detection model reveals that asymmetries are in fact a real phenom-
enon and do not reflect distortions from averaging data.
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Although the field of memory is evolving rapidly, it remains
characterized by several long-standing debates. One of these is
whether memory is served by one or several distinct systems or
processes (Schacter & Tulving, 1994). The recognition memory
paradigm, in which participants decide if targets were previously
studied or not, has provided key findings and fueled vigorous
exchanges (e.g., Wixted, 2007; Yonelinas & Parks, 2007). In
recognition memory experiments, receiver operating characteristic
(ROC) curves are often used to summarize results. One of the most
influential findings for current theory development is that ROC
curves are asymmetric around the negative diagonal. An asymmet-
ric ROC curve typical of recognition memory data is shown as the
dashed line in Figure 1B. A symmetric ROC, in contrast, is shown
as the solid line. The asymmetry in the dashed line has been
replicated repeatedly (see Glanzer, Kim, Hilford, & Adams, 1999;
Yonelinas & Parks, 2007) and has served as a first-order phenom-
enon to be explained by mnemonic theory (e.g., Ratcliff, Sheu, &
Grondlund, 1992).

When considering the role of asymmetry in mnemonic theory, it
is convenient to start with the theory of signal detection (Green &
Swets, 1966/1974) for recognition memory (Kintsch, 1967). At
test, participants assess the mnemonic strength of an item. If the
strength is above criterion, the participant judges the item as
studied; otherwise, the participant judges the item as new. In the
simplest version of the model, strengths are distributed as equal-
variance normals, and the effect of study is to shift the distribution.
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This simple model, however, predicts symmetric ROCs. There are
a number of modifications that predict asymmetries, the most
common of which is to discard the equal-variance assumption. The
resulting model is called the unequal variance signal detection model
(UVSD). In UVSD, study affects both the mean (d') and the variance
(0®) of the normally distributed strengths. The parameter ¢ has a
one-to-one relationship with the degree of ROC asymmetry, with
larger values of o resulting in a larger degree of asymmetry.

ROC asymmetries have inspired a plethora of theoretical ac-
counts. The dual-process model (Yonelinas, 1994), for example,
posits that recognition memory is mediated by either familiarity or
recollection. Familiarity is modeled as an equal-variance signal
detection process; recollection is modeled as an all-or-none dis-
crete process. The degree of asymmetry is related to the amount of
recollection. Other theoretical accounts of asymmetry include mix-
ture models (e.g., DeCarlo, 2002) and global memory models, such
as REM (Shiffrin & Steyvers, 1997) and TODAM (Murdock,
1993). In sum, almost all researchers view the asymmetries in
ROC:s as reflecting characteristics of the mnemonic system. We
provide and assess an alternative account that these asymmetries
reflect a flaw in current practices of data analysis rather than a
characteristic of mnemonic processing.

Separating Process From Participant and
Item Effects

In recognition memory experiments, each participant provides a
single response to each item. This response is not sufficient for
computing the response proportions necessary to construct ROCs.
Hence, researchers average data across participants, items, or both.
To understand the effects of this averaging, one needs to distin-
guish between latent mnemonic processes, on one hand, and what
we term surface variables on the other. Surface variables refers to
effects that are under much experimental control, such as the
selection of participants, items, and number of items between
study and test (lag). Latent mnemonic processes, roughly speak-
ing, refers to commonalities in the structure of encoding, mainte-
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Figure 1. Signal detection models and ROC curves. A: The solid lines denote an equal-variance signal
detection model for the example with hard items (low d’) and easy items (high d'). When rates are averaged, the
result is the dotted-line distribution. B: The solid curve is a symmetric ROC curve from an equal-variance signal
detection model with d" = 2. The dashed ROC curve is an asymmetric curve that results from averaging across
easy and hard items. Averaging introduces an asymmetry in the curve. C: The traditional UVSD parameterization
in which the mean and variance of the new-item distribution are fixed to 0.0 and 1.0, respectively. D: The new
parameterization in which the middle criterion is fixed to 0.0 and the variance of the new-item distribution is
fixed to 1.0. In this parameterization, the means of both the new-item (d“”) and studied-item distributions (d*’)
are free. E: Bias effects are a concurrent increase in both distributions. F: Mirror effects are a concurrent decrease
in the new-item distribution and an increase in the studied-item distribution.

nance, retrieval, and the evaluation of information. For instance,
the theory of signal detection posits that all participants evaluate
the strength of the test item relative to criteria. Processing may
differ across surface variables (e.g., participants may vary in their
sensitivity and criteria), but, nonetheless, there is a commonality of

evaluation of strength. Most cognitive theories are about latent
mnemonic process. For example, in Yonelinas’ dual-process
model, recollection and familiarity are latent processes. The key
distinction between surface and latent variables is that surface
variation is mapped onto particular elements in the design (a
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specific person, item, or lag) and therefore can be parceled out.
Latent variation, including trial-to-trial variability from, say, at-
tentional fluctuation or criterial variation, cannot be mapped to
such elements and is considered part of the latent mnemonic
process.

Separating surface variables from latent process is difficult in
recognition memory experiments. Each participant is tested only
once on each item and only as either new or studied. The result is
that every response in a recognition memory test arises from a
unique combination of a participant, an item, a study condition
(new vs. studied), and a lag if the item was studied. Moreover, only
half of the potential data are observed, as an item cannot be both
new and studied for a given person. If data are averaged over
people or items, participant or item variability is confounded with
mnemonic process. In some cases, this averaging has been shown
to have serious ramifications in interpretation of memory experi-
ments (Curran & Hintzman, 1995; Hintzman, 1980; Hintzman &
Hartry, 1990). In the next section we demonstrate how averaging
data over surface variables may distort the estimation of latent
process parameters in ROC analysis (see also Morey, Pratte, &
Rouder, 2008; Rouder & Lu, 2005).

The Consequences of Averaging

We provide an example of how item variability distorts mea-
surement of ROC asymmetry. Though the example is of item
variability, it extends to other surface variables. We start with an
equal-variance signal detection model. Assume that half of the
items are easy (d' = 3) and half are hard (d" = 1; see solid lines
in Figure 1A). From this model, true hit and false alarm rates are
computed for each item across several criteria (ranging from —1 to
3). These rates are then averaged over the easy and hard items. We
then construct the resulting zZROC curve, which provides an esti-
mate of parameter o in the UVSD model. If averaging has no ill
effects this analysis should yield o = 1, as the rates for each item
were generated from equal-variance models.

The true ROC curve for an equal-variance signal detection
model with d° = 2 (the average of 1.0 and 3.0) is shown as the
solid line in Figure 1B. The ROC curve generated from hit and
false alarm rates averaged over easy and hard items is shown as the
dashed line in Figure 1B. The resulting ROC is asymmetric even
though the data come from an equal-variance signal detection
model. This deviation from symmetry is consistent with a UVSD
model in which ¢ = 1.39 or a dual-process model in which the
probability of recollection is 24%. These values are distortions, the
cause of which is shown in Figure 1A. If data are averaged over
easy and hard items (solid lines), the resulting distribution is too
wide (dashed line) because of confounding item variability.

The example shows that it is critical to separate mnemonic
process from surface variability when interpreting ROC asymme-
try. If asymmetry simply reflects unaccounted surface variability,
then all models that treat it as a characteristic of the mnemonic
system (including UVSD, dual-process, and mixture accounts) are
misspecified. Unfortunately, this separation has not previously
occurred. Some researchers have performed individual-item anal-
yses while averaging over participants; others have performed
individual-participant analyses while averaging over items (e.g.,
Heathcote, 2003; Heathcote, Raymond, & Dunn, 2006). The
former analyses are subject to distortions from participant vari-

ability; the latter are subject to distortions from item variability.
The key point is that surface variables need to be accounted for
simultaneously if psychological process is to be assessed accu-
rately.

Hierarchical Models of ROC Asymmetry

Our main goal is to assess the source of ROC asymmetry—it
may reflect either surface variability or a characteristic of the
mnemonic system. Clearly, we cannot draw ROC curves for each
participant-by-item combination, as these combinations are unrep-
licated. Instead, we take a hierarchical modeling approach in
which both latent psychological process and surface variables are
explicitly modeled. The model developed herein (and discussed in
greater detail in Morey, Pratte, and Rouder, 2008) is a hierarchical
extension of UVSD.

We use UVSD as a psychometric model for measuring ROC
asymmetry. The key parameter is o; if ROCs are symmetric, then
o = 1.0. As asymmetry in ROCs increases, o increases above 1.0.
Our use of UVSD is motivated by a number of factors: First,
UVSD was the initial, and remains the most straightforward,
generalization of signal detection theory made to account for
asymmetry. Second, UVSD has repeatedly been shown to provide
a good fit to averaged data (e.g., Glanzer et al., 1999; Heathcote,
2003; Slotnick & Dodson, 2005; Wixted, 2007) and thus provides
a logical starting point for fitting nonaveraged data. Third, provid-
ing a hierarchical extension of UVSD is both feasible and conve-
nient, as shown by Morey, Pratte, and Rouder (2008) and Rouder
et al. (2007). In theory, it is possible that other models, such as
Yonelinas’ dual-process model and DeCarlo’s mixture model, may
be extended hierarchically to measure asymmetry. In the former,
the estimate of recollection serves as the index of asymmetry; in
the latter, the estimate of mixing probability serves as the index.
Hierarchical extensions of these other models have not been de-
veloped to date.

Model Development

When constructing a hierarchical version of UVSD, it is con-
venient to adopt an alternative parameterization. Figure 1C shows
the traditional parameterization in which the mean and variance of
the new-item distribution are fixed to 0.0 and 1.0, respectively.
Figure 1D shows the alternative parameterization. The means of
the new- and studied-item distributions are free parameters de-
noted by d” and d, respectively. The middle criterion is fixed at
0.0 to make the model identifiable. As in the conventional param-
eterization, the variance of the new-item distribution is fixed at 1.0.
This parameterization does not change the model substantively. It
is, however, convenient for modeling participant and item effects.

To account for participant and item effects, we allow separate
mean strengths for each participant-by-item combination for both
the new- and studied-item distributions. Let d{” denote the mean
of the distribution for the ith participant tested on the jth item when

this jthitem isnew, i = 1,...,1,j=1,...,J. Let d3; denote the
same when the jth item is studied. We include the subscript k to
indicate the level of lag (k = 1, ..., K) between study and test.

Without participant-by-item replicates, it is not possible to es-
timate all of these means without restrictions. We therefore assume
an additive model for surface effects:
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df:;l) = M(") + OLE") + Bj(_n)’
dil = p® + o + B + y(L, — Ly),

where W and W are grand means; o« and o' are participant

effects; B and B{” are item effects; vy is the slope of the lag
effect; L, is the kth lag; and L, is the mean lag across the
experiment such that the sum of (L, — L) is zero. Participant and
item effects are treated as random effects and are modeled as
zero-centered normal distributions:

a & Normal(0, 02,),

alf

4 Normal(0, o2 ,),
n) i 2
B{” % Normal(0, 0j,,),
@ % Normal(0, a3,).

The variances of these distributions are estimated from the data,
and they provide measures of the magnitude of participant and
item variability. We have used this additive structure to account for
participant and item effects in two-alternative forced-choice rec-
ognition memory (Rouder et al., 2007), stem completion (Rouder,
Lu, Morey, Sun, & Speckman, 2008), subliminal perception
(Morey, Rouder, & Speckman, 2008), and lexical decision
(Rouder, Tuerlinckx, Speckman, Lu, & Gomez, 2008). The addi-
tive model is similar to that used in repeated-measures analysis of
variance in which interactions between participants and items are
treated as errors. Criteria are assumed to vary across participants
but not items. These criteria parameters reflect participants’ rela-
tive preference for certain responses. A single value of o is
estimated for all participants and items.

In the reparameterized UVSD model, sensitivity for each
participant-by-item-by-lag combination (denoted d;;) is the dis-
tance between the distributions (dfy, — d{”). Note that sensitivity
is measured in units of the new-item standard deviation. Biases are
correlated shifts in the distributions. For example, shifting both
distributions to the right (see Figure 1E) results in an increased hit
and false alarm rate (i.e., a bias to respond “studied”). Participant
or item variation in bias will result in a positive correlation
between of” and «f”, or between B and B{”, respectively.
Alternatively, a negative correlation in participant or item effects
reflects a mirror effect (Glanzer & Adams, 1990), in which in-
creases in d’ are increases in the mean of the studied-item distri-
bution and decreases in the mean of the new-item distribution (see
Figure 1F). Although the main motivation for the hierarchical
model is to assess asymmetry, hierarchical modeling has many
other advantages, such as providing insight about participant and
item variability, which are considered in the General Discussion.

Our goal is to localize the source of ROC asymmetry. To do so,
we construct a set of submodels that represent theoretically im-
portant restrictions on the above hierarchical model (see Figure 2).
The top-left model, denoted M, is the full model presented above.
The label “PILo” indicates that participants (P), items (I), and lags
(L) have variable effects and that o is not constrained. The top-
right model, denoted M., is the same as M, but with the restriction
that o = 1. Models M5 and M, posit no effect of lag. Models M
and M, do not allow item or participant variability, respectively.
Models M, and My do not allow for any surface variation. We refer

My: PlLo Ma: PIL
No Averaging
DIC=0 DIC = 792
c=1.36 =1 ]
Mjs: Plo Mg: Pl
DIC = 249 DIC = 1061
c=1.37 G =1
Partial Averaging
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DIC = 4385 DIC = 18659
c=13 c =131
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DIC = 21877 DIC = 22442
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Equal-Variance

Unequal-Variance

Figure 2. Relationships among the models. The labels for each model
denote what effects were included. For example, “M,: PILc” indicates that
M, includes effects of participants (P), items (I), lags (L), and free variance
(o). All other models place one or more restrictions on model M. Deviance
information criterion (DIC) values and estimates ¢ are from the fits to
Experiment 1. All DIC values are reported in reference to that of Model
M ; larger DIC values denote a worse fit than that of Model M,.

to M5 through Mg as partial averaging models, as they are equiv-
alent to averaging data over at least one surface variable. We refer
to M, and My as full averaging models, as they are equivalent to
averaging over people, items, and lags.

Psychometric Properties

The hierarchical UVSD model is used here as a psychometric
measurement tool. We show here that, for this purpose, the model
is robust. That is, it may be used to measure ROC asymmetry even
if UVSD or the constituent hierarchical assumptions fail.

1. How well does the model measure o? We addressed this
question by simulating data from the equal-variance signal detec-
tion model M, (with true values from estimates in the subsequently
reported experiment) and fitting the unequal-variance model M.
Over 100 such simulations, the mean estimate of o was 1.04, and
95% of the estimates fell between 0.998 and 1.08. Although these
simulations show that the estimate of ¢ has a slight positive bias,
it can distinguish between symmetric ROCs (¢ = 1) and those
typically observed (o = 1.28).

2. What happens if the effects of people and items are not
distributed as normals? Morey, Pratte, and Rouder (2008)
demonstrated that this assumption is not important. To show this
fact, they simulated data in which participant and item effects were
distributed as exponentials and found very good parameter recov-
ery by fitting the UVSD model assuming normally distributed
effects, especially with regard to o.

3. What happens if the additivity assumption fails? The
effects of items, people, and lags are assumed to be additive (i.e.,
no interactions among these factors exist). This explicit treatment
of surface variation is far more realistic than the implicit assump-
tion made when data are averaged that there are no item, partici-
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pant, or lag effects. Nonetheless, potential violations of additivity
may affect the estimates of o. We assess the effects of violations
in additivity after discussing the experiment, as the results guide
our choices in simulation.

4. What happens if the underlying UVSD model is wrong?
To show that the model accurately measures asymmetry in general,
we generated data from Yonelinas® (1994) dual-process model
with participant and item effects on familiarity and one recollec-
tion parameter (R) across all participants and items. We ran 50
simulations in which the true value of R ranged from O to .6 in
increments of .012. Estimates of o were obtained by fitting model
M, to these data. The corresponding estimates of ¢ are given
approximately by & = 1.02 + 2.8R (this linear relationship ac-
counted for 97% of the variance). Thus, o serves as a reasonable
index of ROC asymmetry even when this asymmetry arises from
recollection rather than strength.

Analysis

The hierarchical UVSD model is analyzed with conventional
Bayesian hierarchical methods (Gelfand & Smith, 1990; Gelman,
Carlin, Stern, & Rubin, 2004; Rouder & Lu, 2005). Bayesian
analysis yields an estimate of the distribution of a parameter,
termed the posterior distribution. The mean of this distribution,
termed the posterior mean, serves as a point estimate. The region
with 95% of the distribution mass is termed the 95% credible
interval (Clys) and is analogous to a 95% confidence interval. To
compare the models in Figure 2, we use the deviance information
criterion (DIC; Spiegelhalter, Best, Carlin, & van der Linde, 2002).
DIC is similar to the Akaike information criterion (AIC); however,
it is better suited for comparing hierarchical models in which the
number of parameters does not provide a good measure of a
model’s parsimony (some parameters are added to gain constraint
rather than flexibility). DIC, like AIC, is measured on a log scale.
Differences of 10 or more in DIC are interpreted as very strong
evidence for the model with the smaller DIC.

In Bayesian models, priors are needed for free parameters. In
M,, priors are needed for p, n“’, vy, o, and variances for
random effects. We have experimented with a number of priors
and find that diffuse, nearly noninformative priors are appropri-
ate for this application. Morey, Pratte, and Rouder (2008) have
provided extensive details concerning the priors and the method
of analysis." The R library HBMEM (available from CRAN or
pcl.missouri.edu) provides functions for fitting the models pre-
sented herein.

Experiment

We ran a large-scale confidence-rating recognition memory
experiment in which 97 participants were tested on 480 items.
Although a 480-item test list is large, Glanzer et al. (1999) used the
same length and obtained a typical sensitivity (@' = .94) and
variance (& = 1.28). If previous estimates of ¢ > 1.0 are con-
founded with participant or item variability, we expect the estimate
of o from the hierarchical model (M) to be closer to 1.0. Alter-
natively, if recognition memory ROC curves are truly asymmetric,
the hierarchical model estimate of o should be greater than 1.0.

Method

Participants

Ninety-seven University of Missouri students participated in
Experiment 1 in return for credit toward a course requirement.

Stimuli

The word pool for the experiment consisted of 480 words from
the MRC Psycholinguistic Database (Coltheart, 1981). Words
were between four and nine letters in length and had a Kucera—
Francis frequency of occurrence between 1 and 200 (Kucera &
Francis, 1967). Study lists were constructed by randomly sampling
240 of these words, and there was a separate study list per
participant. Test lists were composed of all 480 words. Presenta-
tion order was randomized at study and at test and across all
participants. A second word pool was used for practice items.
These practice items did not overlap with the main word pool.

Procedure

Participants began with a practice session in which they studied
five items and made confidence ratings to a subsequent 10-item
test list of words. Following practice, participants were presented
the study list. Each word was displayed in the center of the screen
for 1,850 ms, followed by a 250-ms blank period before the next
word was presented. Participants were required to read each out
loud to ensure that they attended to each word; compliance was
monitored. Following study, participants completed the test phase.
Each item was presented on the screen, and participants rated their
confidence using the ratings “sure new,” “believe new,” “guess
new,” “guess studied,” “believe studied,” and “sure studied.”

Model Analysis

Measuring Variance Components

We fit all of the models in Figure 2. The differences in DIC for
each model compared with that for model M, are shown in the figure.
As can be seen, all submodels are inferior to the full model, M,. This
result indicates not only that participants, items, and lags contribute
substantial variability but that o is assuredly greater than 1.0.

Figure 3A shows the estimates of overall sensitivity d’ from
each model. The models with fixed o (M,, M,, My) lead to lower
estimates of sensitivity d’ than do those with free o (M,, M5, M,
Mg, M;). This pattern is expected because d' is defined with
reference to the new-item distribution. More interesting is the
effect of averaging. First, the more averaging, the lower the esti-
mate of d’. This result is also expected; Rouder and Lu (2005)

' The model developed in Morey, Pratte, and Rouder (2008) was pa-
rameterized slightly differently than the one used here. Here, we fix the
middle criterion to zero and the variance of the new-item distribution to
1.0. Morey, Pratte, and Rouder fixed the lowest and highest criteria to 0
and 1, respectively, and the variances of both the new- and studied-item
distributions were free parameters. The conclusions drawn from the exper-
iment do not depend on the parameterization.
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Figure 3. Model analyses. A: Estimates of d' from the eight models. B: Estimates of ¢ from the five
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from model M,, which do not include word-frequency effects (right). Error bars show 95% credible intervals.

noted that averaging artifactually reduces sensitivity estimates (see
also Wickelgren, 1968).

Second, and more important, averaging leads to an underestimation
of sampling error. For M, the estimate of d' has a credible interval
with a width of .28 (see error bar i). For M, in contrast, the credible
interval width is .05 (see error bar ii). The former interval is accurate,
but the latter is wrong (for coverage estimates, see Morey, Pratte, and
Rouder, 2008). The reason for this underestimation in confidence
intervals with averaging is that systematic variation across items and
participants includes correlations in performance; this inclusion, in
turn, reduces the effective sample size (see Clark, 1973; Rouder & Lu,

2005). Here, the reduction in standard error is severe and leads
researchers to have far too much confidence in a distorted estimate.

Figure 3B shows the estimates of ¢. First, all models that have
free parameter o indicate an estimate well above 1.0, validating the
large DIC increase for equal variance models in Figure 2. Second,
averaging has only minimal effects, with increased averaging
associated with marginally smaller estimates.

In the previous example with hard and easy items, we speculated
that averaging artifactually increases estimates of . This speculation
is clearly wrong. Why did the hierarchical model not provide a
smaller estimate of o than the averaging methods? The answer lies in
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a comparison of participant and item variability in mnemonic strength
across the new- and studied-item conditions. Estimates of this vari-
ability for participants (o, ,, 0, ,) and items (o ,, 0 ,,) are shown in
Figure 3C (first four bars). Here we see that although there is sub-
stantial systematic item and participant variability, it is similar in size
across the new- and studied-item conditions. In the example in Fig-
ures 1A and 1B, in contrast, there was sizable variability for studied
items and none for new ones. Averaging data from the studied-item
condition conflates estimates of process variability in the studied
condition with studied-item variability. Averaging data from the new-
item condition conflates estimates of process variability in the new
condition with new-item variability. If both of these item-variability
sources are the same size, the degree of inflation is about the same in
both conditions. Because the estimate of ¢ reflects the ratio of studied-
item strength variance to new-item strength variance, averaging the
data from both conditions inflates both variances about equally, and
their ratio, o, is approximately preserved. This pattern cannot be
predicted a priori and could not have been discovered without the
hierarchical model analysis.

In the preceding section on psychometric properties, we worried
about violations of the additivity of surface variation. The ob-
served pattern, in which there are equal amounts of item and
participant variability across conditions, provides guidance for
assessment. The worst-case scenario is that violations of additivity
occur only for studied items and not at all for new items, as this
pattern of variability leads to an artifactual overestimation of a. To
assess the implications, we simulated data from the equal-variance
model M, with the addition of an interaction term to the studied-
item distribution mean only. This interaction was of the same
magnitude as the item effects themselves. Over 100 such simula-
tions, the mean estimate of o from model M, was 1.21, and 95%
of estimates fell within 1.16 and 1.26. This estimate is certainly too
high and reflects the fact that interactions enter only for studied
items. Even so, it is far lower than and cannot account for our
finding of ¢ = 1.36. Thus, even in this worst-case and highly
implausible scenario, violations of additivity cannot account for
the degree of asymmetry present in ROCs.

The Structure of Lag, Participant, and Item Effects

Although model M, was designed to measure ROC asymmetry,
it is also useful for assessing lag, participant, and item effects. We
consider first the effect of lag on the mean of the studied-item
distribution. The DIC value of 249 for model M5 in Figure 2
indicates that lag does indeed have an effect. The estimated slope
of the lag effect, the amount of change in d* per one-item of lag,
is 4 = —.001. Although this number is small, the effect of lag
across all 717 levels on d" is .717, which is quite large given that
the average sensitivity is d’ = 1.38. Even though there is a lag
effect, this effect does not have an appreciable influence on the
estimate of o (compare models M5 and M, in Figure 3B).

Participants and items also had significant effects on the new-
and studied-item distribution means. In model M,, d' values for
participants ranged from 0.12 to 2.44, and those for items ranged
from 0.21 to 3.60. Figure 4A shows a scatter plot in which the
participant effects in the studied condition are plotted as a function
of those in the new condition. Figure 4B shows the same for items.
For participants, there is a positive relationship, » = .30, #95) =
3.11; that is, people with higher strength in the new condition have

higher strength in the studied condition.> As discussed previously,
this positive correlation indicates that people primarily vary in
overall response bias (see Figure 1E), in addition to differences in
sensitivity d'. In contrast, items exhibit a mirror effect: Items that
have higher strength in the new condition tend to have lower
strength in the studied condition, r = —.22, 1#(478) = 4.82.

The ability to estimate item effects without distortion from
averaging over participants also allows for an examination of the
effects of item characteristics. Here, we highlight the effect of
word frequency on mnemonic strength. Item effects for the new-
and studied-item conditions are plotted as a function of word
frequency in Figures SA and 5B, respectively. As can be seen,
there is a substantial mirror effect: Increases in word frequency are
associated with increases in baseline strength (Bj(”)) and with
decreases in studied strength (B{").

The finding of strong word-frequency effects raises two addi-
tional questions: (a) Are there item effects in this data set above
those from word frequency? and (b) If there are such extra-word-
frequency item effects, do they also exhibit a mirror-effect pattern?
To answer these questions, we constructed a model, M,, that
included word frequency as a covariate on item effects:

B ~ Normal (6“[f; — fol, ‘”é.n)’

B\” ~ Normal (6“[f; — fol. wg,).

where 6 and 6 are slopes of the word frequency effect; f; is the
logarithm of the Kucera—Francis word frequency for the jth item; and
Jo is the mean of these log-word frequencies, such that the sum of
these terms is zero. These parameters are estimated at 6 = .15
(Clys = [.14, .16]) and 0 = —.14 (Clys = [—.15, —.12]), which
confirms the existence of a substantial frequency-based mirror effect.

The systematic item variability not accounted for by word
frequency is given by mé’n and u)é_x. These variances are useful for
answering the first question about extra-word-frequency item ef-
fects. Estimates of these variances are shown as the two rightmost
bars in Figure 3C. The credible intervals are well above zero,
indicating substantial extra-word-frequency item effects. In fact,
only 25% of the systematic item-level variance may be attributed
to word frequency; the remaining 75% is from other factors.

The second question about whether these extra-word-frequency
item effects exhibit a mirror effect may be assessed by plotting item
effects from M, (see Figure 4C). Removing word-frequency effects
greatly attenuates any item-level mirror effect, r = —.007, #(478) =
0.15. Whereas there is a mirror effect for word frequency, there does
not appear to be one for other item characteristics that are orthogonal
to word frequency, even though these other characteristics account for
a substantial proportion of item variability. We note, however, that our
failure to find extra-word-frequency mirror effects may not generalize
to other studies in which, for example, stimuli have a larger range on
these orthogonal item characteristics (e.g., word length). The mirror

2 It is not clear how to assess the statistical significance of this correla-
tion. The associated 7 value is highly significant. Yet, in interpreting this
value one assumes that the estimates are independent. In this case, they are
not, as they are connected by a hierarchical structure. We suspect that the
current priors, which assume independence, result in a bias toward atten-
uating correlations (see Rouder et al., 2007) and that the interpretation of
the ¢ value is, if anything, conservative.
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Figure 4. Participant and item effects. A: Participant effects in the studied condition plotted as a function of
those in the new condition. The positive correlation is a response bias. B: Item effects in the studied condition
plotted as a function of those in the new condition. The negative correlation is a mirror effect. The solid line
represents the word-frequency effects obtained from model M,, in which word frequency is linearly regressed
onto item effects. C: Item effects in the studied condition plotted as a function of those in the new condition after
word frequency is partialed out. The mirror effect seen in Panel B is greatly attenuated.

effect has been interpreted as supporting a likelihood basis of decision
making in which participants assess what their mnemonic strength
would have been if the item was and was not studied (Glanzer,
Adams, Iverson, & Kim, 1993). The current results indicate that
participants may be able to make these calculations with regard to
word frequency but not, perhaps, with regard to other item character-
istics that are orthogonal to word frequency.

General Discussion

We analyzed ROC data with a hierarchical version of UVSD to
assess the source of ROC asymmetry. The results revealed that
these asymmetries are not due to averaging data but reflect the
underlying mnemonic process. Although our results do not differ-
entially support any one model of asymmetry over others, they
vindicate the class of models that assume ROC asymmetry results
from the structure of the mnemonic process.

Our results may seemingly license the use of averaging data, as
the estimates of o from averaged data are nearly the same as that
from the full hierarchical model. We believe that this view is
mistaken and that hierarchical modeling has much to offer
recognition-memory researchers. Consider the following:
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1. Accurate Point Estimates

Although we found a near equivalence between data-averaged
and hierarchical estimates of o in this experiment, it would be
dangerous to assume that the equivalence holds generally. For
example, consider a levels-of-processing experiment in which
there is a common false alarm rate across levels (new items at test
cannot be considered deep or shallow). Suppose items have more
variability in sensitivity in the shallow-study condition than in the
deep-study condition, but the true value of ¢ is the same for both.
When averaged, this differential item variability will make it seem
that there is a greater value of o for the shallow-study than the
deep-study condition. Nature cannot be relied upon to ensure equal
item and participant variability across all conditions of interest to
psychologists. Hence, hierarchical models serve as necessary in-
surance against unforeseen differences in participant and item
variability across conditions.

2. Accurate Confidence Intervals on Sensitivity
Estimates

Unaccounted surface variation leads to an underestimation of the
confidence intervals on sensitivity and, consequently, an increase in
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Figure 5. Word frequency effects. A and B: Item effects in the new and studied conditions, respectively,
plotted as a function of word frequency on a log scale. Lines are nonparametric smooths (Cleveland, 1981).
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the real Type I error rate over the nominally reported value (Clark,
1973; Rouder & Lu, 2005). This bias is asymptotic, and the magni-
tude of the bias depends on the magnitude of unaccounted surface
variation. Hierarchical models that account for surface variation avoid
these difficulties and provide for principled inference.

3. Powerful Model Comparison

Hierarchical modeling allows for more rigorous model compar-
isons than does data-averaged analysis. In data-averaged analysis,
a model is required to fit a few averaged curves. Alternatively,
hierarchical versions of the models must accurately specify not
only how the memory system differs across conditions but also
how it differs across people and items. This level of specification
and comparison seems highly appropriate for any model that
purportedly explains the mnemonic system.

4. Measurement of Item and Participant Effects

Several areas of memory research involve the study of individ-
ual differences or the effects of item covariates. Hierarchical
analysis allows for the accurate characterization of participant and
item covariates on the mnemonic system.
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