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Recognition memory is commonly modeled as either a single, continuous process within the theory of
signal detection, or with two-process models such as Yonelinas’ dual-process model. Previous attempts
to determine which model provides a better account of the data have relied on fitting the models to
data that are averaged over items. Because such averaging distorts conclusions, we develop and compare
hierarchical versions of competing single and dual-process models that account for item variability. The
dual-process model provides a superior account of a typical data set when models are compared with
the deviance information criterion. Parameters of the dual-process model are highly correlated, however,
suggesting that a single-process model may exist that can provide a better account of the data.

© 2010 Elsevier Inc. All rights reserved.

Memory researchers have long been interested in determining
the number of processes that underlie memory. Examples of
separating memory into distinct mnemonic processes include the
division of memory into long and short term stores (James, 1890),
into episodic and semantic components (Tulving & Craik, 2000),
and into implicit and explicit systems (Schacter, 1990). A current
debate is whether recognition memory reflects a single strength-
based process or reflects distinct familiarity and recollective
processes (see Wixted, 2007; Yonelinas & Parks, 2007, for reviews).
The assessment of which position best describes the data has been
repeated many times. Both positions have strong advocates who
claim the evidence strongly favors their position.

Our goal in this paper is the same as that of previous authors
— we assess the abilities’ of several single and dual process
models to account for data. One problem with previous attempts
to fit recognition memory models is that these fits were made
to averaged data. In recognition memory experiments, each
participant is tested on each item only once, and the basic structure
of the data is that each observation is unreplicated. In analysis,
researchers almost always averaged data across either participants
or items or both to construct proportions such as hit and false
alarm rates. This averaging would be justified if people or items
didn’t differ. Unfortunately, they do, and the variation across both
people and items is substantial (Pratte, Rouder, & Morey, 2010;
Rouder, Lu, Morey, Sun, & Speckman, 2008). We have shown that
this averaging across variable items or people is problematic in
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nonlinear models because it leads to asymptotic distortions in
parameter estimates as well as distortions in parameter coverage
(e.g., Pratte et al., 2010; Rouder & Lu, 2005; Rouder, Tuerlinckx,
Speckman, Lu, & Gomez, 2008). To avoid these distortions, we
develop hierarchical versions of memory models that account
simultaneously for variability across participants and across items,
as well as variability reflecting the mnemonic processes. These
hierarchical models allow us to assess single- and dual-process
models with far greater confidence than previous assessments.

A common experimental method for assessing recognition
memory processing is to have participants provide unidimensional
confidence ratings at test, where confidence is assessed on
a univariate scale anchored by high confidence that an item
was or was not studied. Data are plotted and analyzed with
receiver-operating-characteristic (ROC) plots. These plots display
the cumulative probabilities of making confidence ratings to
studied items (termed hit rates) as a function of the cumulative
probabilities of making the same ratings to new items (termed false
alarm rates). The key findings are that ROC plots (a) are curved,
and (b) exhibit a small but reliable asymmetry around the negative
diagonal (see Fig. 1(B) for typically observed ROC curves). These
findings motivate the following single-process and dual-process
recognition models.

One common approach to modeling ROC data is the signal de-
tection paradigm of Green and Swets (1966). Signal detection is
often treated as a psychometric model that provides a separate
measurement of sensitivity and bias (e.g., Macmillan & Creelman,
2005). More recently, however, memory researchers have elevated
signal detection to a model of internal psychological processing,
in which the stipulated representations and decision processes
are considered faithful models of what people actually do (e.g.,
Mickes, Wixted, & Wais, 2007). The current state-of-the-art is the
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Fig. 1. Hierarchical UVSD and DPSD models. (A & B) Hierarchical unequal-variance
signal detection model and resulting ROC curves. (C & D). Hierarchical dual-process
signal detection model and resulting asymmetric ROC curves.

unequal-variance signal detection (UVSD) model, discussed by Egan
(1975) and recently championed as a process model of recogni-
tion memory by Wixted (2007). This model posits that recogni-
tion memory judgments are based on latent mnemonic strengths.
When a tested item is new, its strength is distributed as a unit nor-
mal. Studied-item strength distributions have both a larger mean
(denoted d’) and variance (denoted o2). The resulting ROC plots are
curved and have a degree of asymmetry that is determined by the
value of 2. When o2 > 1, the asymmetry favors greater hit rates
at lower false alarm rates, as in Fig. 1(B). Hence, UVSD currently
serves as the iconic single-process account of recognition memory.

A popular dual-process model is Yonelinas’ (1994) dual-process
signal detection (DPSD) model. In this model, performance is a
mixture of recollection and familiarity. Recollection is modeled as
a high-threshold component which occurs with probability R if the
tested item was studied and does not occur otherwise. Familiarity
is modeled as an equal-variance signal detection process; i.e. 6> =
1. This model also produces curved ROC plots that display the
appropriate asymmetry (see Fig. 1(D)). The degree of asymmetry is
determined by the value of R. When R = 0 the ROC is symmetric;
the ROC becomes more asymmetric as R increases above zero.

The UVSD model and the DPSD model serve as base models for
subsequent development. In the next section, we take a slight di-
gression and discuss the difference between variability in process
and variability in items. Following that, we develop several recog-
nition memory models. These are then compared on benchmark
data from Pratte et al. (2010) with model selection performed by
the deviance information criterion (DIC, Spiegelhalter, Best, Carlin,
& Linde, 2002). The results are complex. We find better support for
dual-process models over single process counterparts. These dual-
process models, however, show a fair, though not complete, degree
of correlation between recollection and familiarity. This result sug-
gests that there are not two independent processes in recognition
memory.

1. Separating sources of variability

It is critical to separate variability due to process from that
due to items and participants. To understand variability in process,

consider the hypothetical situation in which a single participant
is tested on a single item. If we could perform this test over and
over, without any learning or testing effects, the variability in
response would reflect the mnemonic process for this participant
and item combination. The underlying patterns in this variability,
such as whether the resulting confidence rating ROCs are curved or
straight lines, or are asymmetric, reflect deep structural properties
that are not a function of the person or item. An example of such
a property is that recognition memory is mediated by a mixture
of recollection and familiarity. In fact, the elucidation of these
structural properties, uncontaminated by variability in people or
items, are the main object of study. Separate from these deep
structural properties is variation from items and participants. For
instance, the probability of recollection in DPSD may vary across
items.

The ramifications of this view are subtle, especially when
discussing the UVSD model. Mickes et al. (2007) and Wixted
(2007), for example, speculate that the asymmetry in ROC plots
reflects item variability rather than a deep structural property.
They note that items will differ in sensitivity, and when data are
averaged, this difference will result in greater variability across
studied items. This scenario, however, is not the only possibility.
It may be that the asymmetry is a deep structural property that
does not reflect item variability but is, instead, a signature of
process variability. In fact, the dual-process model is a process-
variability explanation because recollection is assumed to occur
and add asymmetry even in the absence of item variation. Pratte
et al. (2010) assessed these explanations of ROC asymmetry
using a hierarchical version of the UVSD model (to be discussed
subsequently). They found that ROC asymmetry was even more
pronounced when item variation was modeled, indicating that
the asymmetry reflects process variability. In the next section we
develop several single- and dual-process models that separate
participant, item, and process variation. By separating process
from these other sources, we can see which process model,
uncontaminated by participant and item effects, provides for the
best account of the data.

2. Model development

We develop twelve variants of single and dual process
models. These models are presented below and their relations
are shown in Fig. 2. All models are presented and analyzed in
a Bayesian framework. Primers on Bayesian hierarchical models
for psychologists are provided in Lee (1997) and Rouder and Lu
(2005). In the following sections, we provide the core specification
of the models. Technical elements, such as the specification of
the priors, expressions for conditional posterior distributions, and
the corresponding Markov chain Monte Carlo sampling steps,
are provided in the Appendix. The analysis software is available
as a package for the R data analysis language. The package,
hbmem, may be downloaded from http://www.cran.r-project.org/
or http://pcl.missouri.edu.

The following notation is used throughout: Leti = 1,...,],
j=1,...,J,and k = 1, ..., K index the participants, items, and
confidence ratings, respectively. Let y; denote ith participant’s
confidence rating to the jth item. Pratte et al. (2010) showed that
the number of intervening study and test trials between the study
and test of an item (denoted lag) has a significant effect on studied-
item strength, and that a linear function between lag and mean
strength provided a good fit. Let I; index the (zero-centered) lag
for the ith participant tested on the jth studied item.

2.1. Equal-variance signal detection model

We start with the equal-variance signal detection (EVSD) model
because it is a restriction of both UVSD and DPSD. Elements of
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Fig. 2. Relationships between models. Lines denote nested relationships. Shaded boxes denote the best-fitting DPSD model (right) and best-fitting UVSD model (left). Boxes

with hatched lines denote models comparable to typical analysis.

the development of this model aid in the development of UVSD
and DPSD models. According to signal detection theory, each item
at test gives rise to some latent mnemonic strength denoted Xj.
Participants are assumed to place criteria on the latent strength
dimension such that the probability of making the kth response
is equal to the probability that the latent strength falls between
the k — 1 and kth criterion. Typically, the mean strength of new
items is set to 0.0 in order to fix the location of the strength space.
It is more convenient in accounting for item and participant effects
to allow this mean to be a free parameter and center the space
on a criterion (see Rouder, Lu, Sun, Speckman, & Naveh-Benjamin,
2007). A graphical representation of the EVSD model with this
parametrization is shown in Fig. 3(A). Latent strengths are given
by:

Normal(d,(]”), 1)

y Normal(d,(f), 1)

new,
studied,

where df.s) and df-" ) are means for the ij person-by-item combina-
tion when the item is studied and new, respectively. The probabil-
ity that the ith person makes the kth response to the jth item is:

i(k—l)) - (dlﬁ") - ik) ,
Pr(yl-]- = k| studied) =& (dl(js) — i(k—l)) - (dl(js) — C,'k) ,

where C() = —0Q, C[(/z =0 (C(1(+])/2 = 0ifKis Odd), CK = 00,
and @ is the CDF of the standard normal. In this parametrization
sensitivity d’ is the distance between the new and studied-item
distributions d/ = d(s) d(") Overall new/studied response biases
manifest as concurrent sfnfts in the distributions, and can be
measured as bias; = (d;; © 4 d(” )/2.

The means of the new and studied-item distributions can not
be estimated without some restriction, as each participant-by-item
combination occurs only once, and only as either new or studied.
To make the model estimable, additive structures are placed on the
means:

d;jn) — M(n) +ai(n) + ﬁj(n)’ (1)

Pr(y; = k| new) = @ (d,§”> -

dY = pu® +a + g0 + 69, 2)

where ;1™ and ;¢ are grand means, o and o® are participant

effects,and ™ and ,8(5) are item effects. Parametere“) is the linear
effect of stud’y test lag

There are two approaches to modeling participant and item
effects. The first is to assume that these effects are fixed effects;
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Fig. 3. Hierarchical single process models. (A & B) Hierarchical equal-variance
signal detection model and resulting symmetric ROC curves. (C & D) Hierarchical
gamma signal detection model and resulting asymmetric ROC curves.

that is, they are unconstrained and free to take any value (this
approach is sometimes referred to as full individual differences).
The second approach is to assume that the effects are random
effects, that is, they are samples from a parent distribution which
places constraint on the distribution of values (this approach
is sometimes referred to as structured individual differences).
Both approaches may be implemented by placing the following
structure on participant and item effects:

" ~ Normal(0, o2 ,), (3)
ﬂj(") ~ Normal(0, (I;,n), (4)
) ~ Normal(0, ), (5)
,84(5) ~ Normal(0, 0/; o (6)

To treat the effects as fixed, the variances (o ., ﬂ 0 Oes O og 20
are set exceptionally large such that the normals place little
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constraint on the values. Conversely, to treat the effects as random,
these variances are free parameters that are estimated from the
data. Random-effects modeling has been preferred for hierarchical
modeling of cognitive phenomena because it provides a more
parsimonious model as well as a means of generalizing results to
a larger class of participants and items (e.g., Lee, 2006; Morey,
Rouder, & Speckman, 2008, 2009; Pooley, Lee, & Shankle, 2011;
Rouder et al., 2007; Rouder, Morey et al., 2008; Rouder, Tuerlinckx
et al., 2008).

In this report, we fit both fixed and random effects models
for two reasons. First, the constraint in random effects models,
while previously assumed, has never been assessed in this
context. A model-selection comparison of fixed and random effect
versions allows assessment of the random-effects constraint.
Second, and perhaps more importantly, the fixed-effect models
simulate common practice in the field in which model parameters
are estimated separately and independently for each participant
without constraint. Including fixed-effect models allows for a more
natural comparison of our models with more common approaches.

The structures in Egs. (3)-(6) serve as priors on effects. These
priors have an implicit independence assumption; that is, in
the absence of data the effects are assumed to be independent.
Consequently, any correlations between these effects in the data
may be underestimated with these priors. It is possible to develop
correlated priors; for example, Rouder et al. (2007) develop
a Wishart prior that includes correlations in signal detection
models. We chose the independence priors in (3)—(6) to insure
that any observed correlations, which we interpret as markers
of psychological process, reflect correlations in data without bias
from the prior.

EVSD ROC curves are shown in Fig. 3(B). Each line differs in
sensitivity (d’') and may be thought of as the result of different
participant-by-item combinations. One feature of these curves is
that they are symmetric around the negative diagonal and this
feature stands in contrast to observed data. A second feature is
that the curves form an orderly field. These lines have a coherent
relationship that holds across participants, items, conditions, and
experiments. In this regard, the predictions are highly constrained
and the model exhibits a large degree of parsimony.

2.2. Unequal-variance signal detection models

The hierarchical extension of UVSD is identical to the equal-
variance version developed above except that the variance of
the studied-item distribution is a free parameter denoted o2
(see Fig. 1(A)). In the most general case, we let o vary across
participants and items. Because ¢? must be positive, additive
effects are placed on the log of oi]? as follows:

log(o) = n” + o + B + 6, (7)

where 1) is a grand mean, oti(“) are participant effects, ,Bj(“) are

item effects, and 0@ is the linear effect of lag. These random
effects are constrained to follow the analogous normal priors in
Egs. (3)-(6). We developed fixed and random effect versions of
these priors on d™, d®, and 2. The fixed- and random-effects
versions of UVSD are depicted as the two top-left models, labeled
“UVSD fixed effects” and “UVSD random effects”, respectively, in
Fig. 2.

The UVSD ROC curves are more complicated than those of EVSD.
Fig. 1(B) shows the case for various values of d when o = 1.1 and
o = 1.5. As can be seen, increasing o provides for greater ROC
asymmetry. Although these curves provide for asymmetry, there
are two undesirable properties. First, when sensitivity is low, ROC
curves may dip below the diagonal. This dip implies that perfor-
mance is worse than chance. To our knowledge no such pattern has

ever been demonstrated in typical recognition memory tasks in
which ROCs are drawn for studied and new items (cf. Heathcote,
Raymond, & Dunn, 2006). The second consequence of unequal vari-
ances is that the curves do not display the same degree of order-
liness as those for EVSD. For instance, the UVSD curves cross each
other whereas the EVSD ones do not. In this sense, UVSD is far less
parsimonious than EVSD.

There are several interesting restrictions on UVSD. In our
previous work (Morey, Pratte, & Rouder, 2008; Pratte et al., 2010),
we assumed that o2 was an invariant of the memory processing
system that did not vary across people, items, or lags. We can test
whether this assumption is warranted by comparing the general
UVSD model to one in which aif is constrained to be constant across
people, items, and lags. This constrained model is depicted in Fig. 2
in the box labeled “UVSD one sigma”. A second set of constraints is
motivated by current practice. The typical approach is to average
data over items to produce participant-specific effects. Averaging
over items implicitly assumes there are no item or lag effects, and
so we implemented UVSD with no item or lag effects in d™, d©®,
or o', The fixed-effects version of this no-item effects restriction is
the closest Bayesian analog of the typical analysis, and is shown as
the box with hatched lines in Fig. 2.

2.3. Dual-process signal detection models

A hierarchical version of the Yonelinas’ dual-process signal
detection model is shown in Fig. 1(C). The structure of the EVSD
component is identical to that developed above (see Egs. (1)-(6))
— means of the new and studied-item distributions are the additive
combinations of participant and item effects, and all but the middle
criteria are free to vary across participants. In the hierarchical
version, recollection, Ry, varies across participants, items, and lags.
As before, recollection can not be estimated for every participant-
by-item combination without constraint. We place an additive
structure on the probit link (i.e., the quantile function of the
standard normal):

o7\ Ry) = pn” + o + B0,

where 1 is a grand mean, «” are participant effects, ,Bj(r) are

item effects, and 0" is the linear effect of lag. We implement
versions with these participant and item effects as fixed or random
in a manner analogous to that in Egs. (3)-(6). The fixed- and
random-effects version of DPSD are depicted as the two top-right
models, labeled “DPSD fixed effects” and “DPSD random effects”,
respectively, in Fig. 2.

According to the hierarchical dual-process model, the probabil-
ity that the ith person makes the kth response to the jth item is:

Pr(y,j = k| IIEW) = (dl(j") — i(k—l)) - @ (dfjn) — C,‘ ) ,
Pr(y; = ke {1,...,K — 1}| studied)
(1—Ry) [cp (di(j” - ,~<k_1>> — @ (dfj) - C,»k>] ,

Pr(y; = K| studied) = Ry + (1= Ry) @ (d” = Gioe-)

Fig. 1(D) shows ROC curves generated from dual-process
models with recollection probabilities of either 0.2 or 0.4. Like the
UVSD model, the predictions of the dual-process model are far
less constrained than those of EVSD. ROC curves need not lie in
any uniform field and may cross. This loss of parsimony is exactly
what a dual-process model implies — that ROC curves can not be
accounted for with a simple one-parameter model.

The right branch of Fig. 2 shows the DPSD models considered
here. As with UVSD, there are several interesting constraints on
the above DPSD model. The first constraint is to assume a linear
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relationship between recollection and familiarity (labeled “DPSD
R ~ d™” in Fig. 2). This constraint implies that recollection and
familiarity are the result of a single process and that the dual-
process models may be overspecified. As with UVSD, the typical
approach to fitting DPSD is to average data over items to produce
participant specific effects. Averaging implicitly assumes there are
no item or lag effects. To mimic averaging, we implemented DPSD
with no item or lag effects in d™, d®, or R. The fixed-effects version
of this no-item-effects restriction is the closest Bayesian analog of
the typical analysis, and is shown in Fig. 2 as the box with hatched
lines.

2.4. Gamma signal detection model

One of the features of EVSD that we find most attractive is
the constraint it places on fields of ROC curves. This constraint is
greatly diminished in UVSD and DPSD models. The downside of
EVSD is that it is not compatible with the universally observed
asymmetry in ROC curves. We develop a novel hierarchical
signal detection model that retains the parsimony of EVSD while
predicting ROC asymmetry. In our new model, latent strengths
are distributed as gamma distributions rather than as normal
distributions. The effect of study is to increase the scale of the
distribution; participants set criteria on the latent space as before.

Fig. 3(C) shows the hierarchical gamma signal detection (GSD)
model. Latent mnemonic strengths are given by:

) Gamma(2, )\i(j")) new,
v Gamma(2, )\i(js)) studied.

The shapes of both gamma distributions are fixed to 2.0. This
value was chosen not for any deep theoretical reasons, but simply
because gamma distributions with this shape provide about the
right degree of asymmetry. We tried a few other values of shape,
but none provided a better fit. To fix the scale of the space, the
middle criterion is fixed to 1.0, and, as in EVSD, the remaining
criteria are free to vary across participants. The scales of the new
and studied-item distributions, Ai(j”) and )\,.(js), respectively, are free
to vary across participants and items. Sensitivity in the gamma
model may be defined as the ratio of studied to new-item scales
d; = A,fjs)/kfj"). Additive models are placed the log of scale
parameters so that these scales are restricted to be positive:

log(0{") = ™ + o + B,

log(h{) = u® + o + B + 6.
These random effects are given the same hierarchical structures
shown in Egs. (3)-(6).

Fig. 3(D) shows GSD ROC curves for several levels of sensitivity.
As can be seen, the curves produce a similarly structured field
as EVSD, however, they are asymmetric. If these lines were fit
with UVSD, there would be a positive correlation between d’ and
o2. Such a relationship is often but not always observed in the
literature (e.g., Glanzer, Kim, Hilford, & Adams, 1999; Ratcliff, Sheu,
& Grondlund, 1992; Yonelinas & Parks, 2007).

It may seem that the gamma is a rather arbitrary choice for a
signal detection model. Indeed it is. This insight, however, applies
to the normal as well — there is no real reason to chose the
normal distribution over alternatives (see Egan, 1975; Lockhart &
Murdock, 1970; Rouder, Pratte, & Morey, 2010). We consider the
gamma superior a priori to the normal on pragmatic grounds. It
explains the asymmetry in the data while predicting constrained
and orderly ROC fields. Therefore, it is a reasoned alternative
worthy of study. The gamma model is similar to the extreme-value
model proposed by DeCarlo (1998). DeCarlo’s model also yields
asymmetric ROC curves which form a orderly field. Furthermore,
DeCarlo’s model has a single parameter to describe the effect of
study. In fact, the two models are so similar that each serves as a
reasonable surrogate for the other.

2.5. Parameter recovery

The UVSD and DPSD models with participant and item effects
on o2 and recollection, respectively, are novel developments
that merit benchmarking. We use simulation analysis to explore
parameter recoverability for both models. First, data were
generated from the UVSD model with the same design matrix as
the experiment presented below (97 people, 480 items at test).
Grand means, random effect variances, and criteria were also the
same as those estimated in the experiment (effects were randomly
generated from their parent distributions). The results of this
simulation are shown in Fig. 4. The top panels show estimates of
participant effects on the new-item mean, studied-item mean, and
log variance as a function of their true values. The bottom panels
show the same for items. Clearly, with a large experiment the
model performs extremely well.

The hierarchical DPSD model is benchmarked through simula-
tion in the same manner. The results for new-item mean, studied-
item mean, and recollection effects for participants are shown in
the top panels of Fig. 5; the same is shown for items in the bottom
panels. As with UVSD, the hierarchical DPSD model provides for
accurate parameter recovery for this design. The model’s perfor-
mance in other designs (e.g., fewer participants or items) is quite
good, but is not explored here, as it should be assessed through
simulation on a case-by-case basis.

3. Model comparison

Fig. 2 shows the twelve models of interest. Selecting amongst
them is an intellectually difficult exercise. Model-selection must
take into consideration both how well a model accounts for
the data, and how complex (or flexible) it is. One approach to
quantifying complexity is to count parameters. Popular fit statistics
such as AIC and BIC penalize models by the number of parameters
they include. Unfortunately, these measures are not appropriate
for hierarchical models as their constraint is not well-captured by
counting parameters.

To understand how constraint is not captured by the number
of parameters in hierarchical models, consider the simple linear
model in Eq. (1). If no hierarchical structure is imposed on the
effect parameters, then there are 1 + I 4+ J parameters in the
additive components. If the item and participant effects are treated
as random effects and the variances in Egs. (3) and (4) are treated
as free parameters, then two new parameters have been added.
These additional parameters, however, decrease the complexity of
the model as they will constrain the effect parameters to be more
similar to each other. In this very real sense, adding parameters
to make a hierarchical structure, decreases rather than increases
complexity.

Because hierarchical structures reduce model complexity by
adding parameters, methods that rely on counting parameters
are not appropriate. A better alternative in this context is the
deviance information criterion (DIC, Spiegelhalter et al., 2002), a
model selection statistic specifically designed for selecting among
hierarchical Bayesian models estimated with MCMC sampling.
The DIC statistic for a model is its deviance plus a penalty
term for the number of its effective parameters, denoted pD.
Deviance is a measure of how well the model accounts for
the data (in Bayesian models, the posterior mean of a deviance
distribution is calculated). The number of effective parameters is
an estimate of how many unconstrained parameters there are in the
model. This measure equals the true number of parameters when
prior distributions are non-informative, and becomes smaller as
hierarchical structures add constraint.

Although DIC is convenient and more appropriate than some
other methods, it is not without faults and critiques. One of
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our main concerns is that DIC is miscalibrated in that it tends
to overstate the evidence toward more complex models. Like
AIC and inference by p-values, this overstatement increases with
sample size (Rouder, Speckman, Sun, Morey, & Iverson, 2009;
Wagenmakers, 2007). A more compelling model selection statistic
would be Bayes factor (Kass & Raftery, 1995), but we know of no
tractable method of performing the necessary integration for the
models in Fig. 2.

One of our main goals in this paper is discriminating between
UVSD and DPSD. We assessed how well this can be performed with

n of their true values for the new-item mean, studied-item mean, and recollection,

DIC via simulation. Data were generated by both random-effects
UVSD and DPSD models with the true values based on model fits
to the subsequent experiment. Each simulated data set was fit
with both UVSD and DPSD, and the DIC difference was calculated.
Histograms of these differences are shown in Fig. 6. Clearly the
DIC statistic accurately discriminates between data generated from
the two models. Although this approach is not as extensive as the
bootstrap assessment offered by Wagenmakers, Ratcliff, Gomez,
and Iverson (2004), it provides confidence that these models are
indeed discriminable with sample sizes characteristic of our data.
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Fig. 6. Discriminating between UVSD and DPSD as generating model. Data were
simulated from the hierarchical UVSD model (100 simulations) or the hierarchical
DPSD model (100 simulations) with grand means and effect variances set to those
estimated in the experiment. For each simulation the difference in DIC (ADIC)
between the UVSD and DPSD model fits was calculated such that negative values
indicate that UVSD provides a better account. The histogram of ADIC from these
200 simulations shows that when the data were generated from UVSD (white)
DIC prefers the UVSD model; when the data were generated from DPSD (grey) DIC
prefers the DPSD model.

Table 1

Model selection statistics.
Model DIC Statistics
Family Effects Restriction DIC? Deviance Penalty (pD)
DPSD Random - 0 128732 1716
DPSD Fixed - 134 128633 1948
uvsD Random - 137 128864 1721
uvsD Fixed - 316 128727 2036
DPSD Random R oc d™ 722 129838 1331
UvsD Random one o2 1009 130098 1359
GSD Random - 1016 130101 1363
EVSD Random o?=1 1799 130886 1361
DPSD Random no items 5300 135137 610
DPSD Fixed no items 5327 135135 639
uvsD Random no items 5344 135182 609
UvsD Fixed no items 5377 135163 662

2 DIC is Deviance + Penalty - DIC for DPSD random effects model.
4. Experiment

The data used to assess the models is from a large-scale
confidence-rating experiment reported by Pratte et al. (2010). In
this experiment 97 participants studied 240 words by viewing
them for 1850 ms and reading each aloud. Following study each
participant was tested on the same 480-item set using a 6-point
confidence rating scale. Half of the items were chosen randomly to
be studied for each participant.

5. Results

The twelve models were fit using the methods discussed in
the Appendix with the hbmem package in R. Table 1 shows DIC
statistics for each model. The DIC value for each model is the
difference between that model’s DIC value and the DIC value for the
general DPSD model with random effects. The following patterns
are evident.

DPSD is selected over alternatives Every DPSD model was preferred
to its corresponding UVSD counterpart. This trend holds regardless
of restriction and regardless of whether effects are considered fixed

or random. DPSD also outperformed the EVSD and gamma single-
process alternatives.

The dependence of recollection on familiarity The general DPSD
model with random effects provided the best account of the data.
Fig. 7 shows how recollection and familiarity co-vary. Fig. 7(A)
shows the scatter plot for participant effects on recollection as a
function of participant effects on sensitivity, where the latter is
given by ai(s) — af"). Fig. 7(D) shows the same for items. As can
be seen, there is a positive relationship. Fig. 7(B) and (E) show the
scatter plots for recollection and new-item or baseline familiarity;
Fig. 7(C) and (F) show the same for studied-item familiarity. Almost
all of the relationship between sensitivity d’ and recollection is
reflected in baseline familiarity. Items that pre-experimentally
have less familiarity tend to be recollected at higher rates. It is
important to note that these correlations do not reflect influences
from the priors. The prior structure assumes independence
between parameters, and, in our experience, independent priors
lead to attenuated estimates of correlations (see Rouder et al.,
2007). Hence, if anything, true correlations are larger than those
reported.

Based on these relationships, we fit a DPSD model in which
recollection was a linear function of baseline familiarity:

O (Ry) = 1 + ot + pB"

where ¢, and ¢z are the linear slopes relating the new-item
strength effects to the recollection effects for participants and
items, respectively. The lines in the middle panels of Fig. 7 are
from this restricted model with estimated slopes of ¢, = —1.03
and ¢g = —1.49. Although this linear model provides a good
account of the relationship, the DIC value (see Table 1) suggests
that the decrement in fit is not offset by the gain in parsimony
when compared to the general DPSD model. The conclusion is
that although baseline familiarity and recollection are substantially
related, a deterministic linear relationship is not sufficient.
Although the UVSD model provides an inferior account of the
data, it is nevertheless interesting to ask whether UVSD parameters
are correlated. In out previous work (Pratte et al., 2010) we show
that for these data there is a positive relationship between baseline
strength and studied-item strength across people (reflecting a
response bias), and a negative correlation across items (reflecting
a mirror effect). Fitting the UVSD model with o2 free to vary across
people and items reveals a positive correlation between d’ and o2
for both participants (r = .33, t(95) = 3.35,p < .05) and items
(r = .68, t(478) = 20.42,p < .05). Accordingly, both the DPSD
and UVSD model analyzes imply that ROC asymmetry (R and o2,
respectively) is positively related to overall performance.

Random vs. fixed effects Models with random effects are selected
over models with fixed effects. This trend holds for both DPSD and
UVSD, and both when item effects are included and when they
are excluded. The DIC statistics reveal that the advantage of the
random-effect models is not in fit. Naturally, fixed-effect models
fit better as they are less constrained. The DIC penalty terms reveal
that the gain in parsimony for treating people and item effects as
samples from parent distributions, however, more than offsets the
loss in fit.

To better explicate the constraint in random effects modeling,
we plotted participant and item effect estimates from the random-
effects model as a function of those from the fixed-effects model.
Fig. 8 shows the case for the UVSD model, and the displayed
trends are similar for DPSD. The main difference between random
and fixed effects is at the extremes — random effect estimates
are less extreme than their fixed effect counterparts. This trend
reflects the natural correlate of assuming these effects are from a
common parent distribution with normal tails. The interpretation
from the random effects model is that the extremes in fixed-effect
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estimates are elements of over-fitting. The constraint in random
effects is expressed as a shrinkage of extreme estimates to group
means. This shrinkage effect is greatest for item estimates (bottom
row) because there are many more items than participants. The
shrinkage is also greater for studied-item parameters than new-
item parameters because the effect of study is modeled in two
parameters (d® and o) rather than in one (d™).

The presence of item effects Two important questions remain
concerning item effects: (1) should item effects be included in the

models, and (2) is accounting for item effects driving the advantage
of DPSD over UVSD? To answer both questions we fit fixed- and
random-effect UVSD and DPSD models without any item effects or
lag effects. These analyzes, which are comparable to averaging data
over items, are shown in the last four rows of Table 1. Item effects
are so prevalent that models without item effects perform worse
than EVSD (with item effects). This last comparison is important
because EVSD has been considered insufficient for recognition
memory for over three decades.



44 M.S. Pratte, ].N. Rouder / Journal of Mathematical Psychology 55 (2011) 36-46

Results for the models without item effects makes it evident
that the inclusion of item effects is not driving the selection of
DPSD over UVSD. Consider the comparison of the general models
vs. the comparison of models without item effects. For the former,
the DIC favors DPSD by 137; for the later, DIC favors DPSD by 44.
The difference in these comparisons highlights the fact that one
of the advantages of modeling items is that it facilitates model
selection. When accounting for items, the data are richer (greater
numbers of degrees of freedom) and the models are more complex.
The balance, however, is that model misspecification of structural
properties becomes more apparent and so model selection is
easier.

In both UVSD and DPSD, study affects two parameters. In our
previous work with UVSD (Morey, Pratte et al., 2008; Pratte et al.,
2010), we implemented a single value of o2 for all participant-
by-item conditions. The current research shows this choice is not
optimal as the model with participant, item, and lag effects on o'
is selected over our previous model.

6. Conclusion

The results show some of the advantages of taking into account
item and participant effects while modeling recognition memory
performance. The substantive conclusion offered here is that the
dual-process signal detection model outperforms the others. Even
so, we are hesitant to fully embrace DPSD, and do not believe
the evidence we provide is overwhelming. We offer the following
caveats to aid in the judicious interpretation of our results.

Our focus in this paper has been on statistical modeling rather
than on exploring the best manipulations to test theoretical
positions. We would be more convinced of DPSD or UVSD if
one could selectively influence key parameters, especially while
accounting for participant and item variation. Several researchers
have made convincing arguments that previous demonstrations
of selective influence are methodologically or conceptually flawed
(Dunn, 2008; Wixted, 2007; Yonelinas & Parks, 2007). We
believe the hierarchical models developed here, when combined
with appropriate manipulations, offer a principled and powerful
approach to assessing selective influence.

A second caveat is rooted in the substantial relationships in
DPSD parameter estimates. Recollection is correlated with baseline
familiarity suggesting that familiarity and recollection may not be
that distinct. There may be reasons for this dependence that retain
the spirit of the dual-process model. Alternatively, however, the
correlation may be diagnostic of a single-process structure. The
challenge from this point of view is to explain why the model
with the linear constraint fared worse than the general model. One
possibility is that we simply have chosen the wrong transforms
for regression. In our DPSD model, recollection parameters enter
through a probit transform and familiarity is assumed to be
normally distributed. Both of these choices are arbitrary and
perhaps other choices would reduce the noise in the scatter plots of
Fig. 8. The ability to detect misspecification in transform increases
as the data span larger ranges in accuracy. Though these ranges are
large in our experiments, they may be made even larger through
manipulation.

A third caveat reflects the nature of DIC as a model selection
statistic. DIC has, as a benefit, that it reflects constraint from
hierarchical structure. One negative property is that it does
not reflect this constraint in a consistent manner. As discussed
previously, DIC does not appropriately penalize complexity as
sample size increases. We feel that DIC is most useful for
selecting across models of relatively comparable complexity, such
as between comparable UVSD and DPSD models. We are most

concerned about the DIC evaluation of nested models with large
differences in effective parameters and with large sample sizes,
as we have here. As noted, DIC is based on the same logic as
AIC, and as a consequence, overstates the evidence against nested
submodels. In this regard, we take the selection of the general
DPSD model over the one where recollection is a linear function of
familiarity with qualification. Similarly, we qualify the rejection of
the gamma model via DIC — it too may reflect DIC’s bias toward
more complex models in cases with large sample sizes. Ideally,
more consistent model selection techniques, such as Bayes factor
or minimum description length (Grunwald, Myung, & Pitt, 2005),
would be available for this inference.

Appendix

Here we provide full specification for each model, and overview
how each is estimated.

A.1. Equal-variance signal detection model

For the EVSD model non-informative priors are placed on all
grand means and effect variances:

w ~ Normal(0, o),

Oaec ~ INverseGamma(a, b),

where 002 = 100and a = b = .01.Flat priors are placed on criteria,
and criteria are constrained to order.

Sampling model parameters conditioned on the multinomial
data is difficult. Instead, following Albert and Chib (1995) data
augmentation is used by introducing latent variables wj. The
mapping between the multinomial data and continuous latent data
is:

Vij = k) = (Cik—1) < wij < Cip)-
Latent variables wj; are distributed as normals:

Normal(dfj") ,1), New,

Normal(d{”, 1),  Studied.

wii ~

The conditional posterior distribution of wy; is

()
| TN(Ci(yij—l)~Ci(yij))(dij , 1), New,
wii | -~ (S) .
TN(Ci(y,-j—l)sCi(y,-j))(dij s ]), Studled,

where TN, (i, 0%) is a Normal(p, 02) distribution truncated
below at a and above at b.

Once wj are sampled, sampling the grand means and effect
parameters in Eq. (1)-(2) is simply a matter of sampling stan-
dard linear model parameters conditioned on the latent normal
data. There are several techniques for doing so that minimize au-
tocorrelation, including blocked sampling and piecewise sampling
with Metropolis-Hastings decorrelating steps (see Gelman, Car-
lin, Stern, & Rubin, 2004). Here we use the latter option as it is
faster for large experiments. After sampling the linear components
the criteria may be sampled. Sampling the criteria conditioned on
the latent data leads to a great deal of autocorrelation. This au-
tocorrelation may be mitigated instead by sampling the criteria
conditioned on the multinomial data with Metropolis-Hastings
sampling. Details of sampling the criteria can be found in
Morey, Pratte et al. (2008).
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A.2. Unequal-variance signal detection model

Sampling from the posterior of the UVSD model is the same as
sampling from the EVSD model, with the following exceptions:

Normal(du , 1), New,
Wi ~
' Normal(d,(;), 07), Studied.
(n)
wi | TN(Ci(yij—l)vCi(y,'j))( ij D, New,
gl-~ © 2 .
TN(ci(yij,l),q(yij))(du, i), Studied.

Sampling the linear components of the new-item means condi-
tioned on wy; is straightforward. To our knowledge, however, the
additive model on log variance in Eq. (7) has not been developed
previously. Let v = log(o7) = u® + a + ﬁj(“) +6™l;. The log
conditional posterior distribution of the linear components on the
studied-item mean and variance is:

(m” +o + B + 6V

2
(wy =1 —a® = g7 —091;)
+
o1 a4 001
()2
WO? @ B 09)?  w)?
2 + 2 2 2 2
%9 O4.s Ops %9 40
)2
N (a)? (ﬂj ) N 0™)?
o? o? a2 |
o,V B,v 0

The grand mean and effects on the the mean d® have normal
conditional posteriors:

F®1..) ~ N, v)
1 s -1
(T k)
i=0 j=0 0

Lo dwy—p® — B9 — 90
m=v Z - »
i=0 j=0 e'i
FB)..) ~N(m, v)
L J 2 1 B
—V:
v= e i)+ —
Yy et
i=0 j=0 B.s
Lo w ® ) _ g6
wij — ' —ap — 0
m=v) > :
i=0 j=0 e'i
FOP]..) ~N(m, v)
1 -1
= (e )
i=0 j=0 0
roJ lij(wij — ’u(s) a® ﬂj(S))
m=0}"Y :

Conditional posteriors of the grand mean and effects on v? do not
have conditionals with known forms and so are sampled indepen-
dently with random-walk Metropolis-Hastings algorithms. The ef-
fects on d® and on v? are given Metropolis-Hastings decorrleating
steps.

A.3. Dual-process signal detection model

As with EVSD, sampling from DPSD is made easier by
conditioning on latent data rather than the multinomal data. For
the new-item condition, latent data are sampled exactly as they
are in the hierarchical EVSD model:

o]~ TNigy-1. Cxw,>)(dz(1n)’ D.

In addition to sampling latent data for the signal detection
components, latent data are sampled for recollection in the manner
common for estimating linear models on binomial probabilities
(Albert & Chib, 1995). These latent data, denoted wi(jr), are positive
on trials for which recollection occurred and negative otherwise.
On trials for which the response was not equal to K (i.e., not
“sure studied”) recollection assuredly did not occur and so the
response must be the product of the signal detection component.
For these trials the mapping between multinomial and latent data
is as follows:

() )

Lo~ TN(C"(Virl)'C"<yij>) (difs ' 1) }yij #K.
(r)| ~ TN(—o,0) (7' (Ry), 1)

Responses to studied items equal to K could have arisen from

recollection or from familiarity that was above the K — 1 criterion.
If recollection occurred (i.e., a)m > 0) then we have no information

about familiarity. Alternatively, if recollection did not occur (wi(j ) <
0) then familiarity must have been above the K — 1 criterion:

ij

Yij -
(5) s) (r)
.. TN(Q(K 1),00) (du ’ 1) <0

<s)| ~N (d(s) ]) " >0

In a similar manner, if familiarity is above the highest criterion then
we have no information about whether recollection occurred or did
not. Alternatively, if familiarity is below the K — 1 criterion and yet
the response is K, then recollection must have occurred:

o~ N (¢~ Ry), 1) ©) >c,<,< ) i =K
<”| .~ TNig.00) (67" (Ry). 1) o) < Gy [

(n) O] ()

The latent data wp, o, and ;i have marginal normal
distributions with unit variance and means d(]”), dfjs) and ¢>*1(Rij),

respectively. Sampling the additive components conditioned on
these normally-distributed data is straightforward. Criteria are
sampled with a Metropolis-Hastings algorithm as they are in the
EVSD model.

A.4. Gamma signal detection model

Latent data for GSD are posited exactly as in EVSD except that
they are distributed as gamma distributions with shape 2:

) Gamma(2, Hu(")) New,
v Gamma(2, ), Studied.

Ty

and with conditional posteriors that are truncated gammas rather
than truncated normals. We present here the conditional log
posterior distribution of the components for the studied-item
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scales. Those for the new-item scales are equivalent, and criteria
are sampled as they are in EVSD.

—p®

I J
)3
i=0 j=0 e("(s)+°‘i(s)+ﬁj(s)+9(”’ij
(s)
(w9 @™ B 09)?

+ +
2 2 2 2
2 o 04 o of
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