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ABSTRACT

One of the most important methodological problems in psychological research is assessing the
reasonableness of null models, which typically constrain a parameter to a specific value such as zero.
Bayes factor has been recently advocated in the statistical and psychological literature as a principled
means of measuring the evidence in data for various models, including those where parameters are set
to specific values. Yet, it is rarely adopted in substantive research, perhaps because of the difficulties
in computation. Fortunately, for this problem, the Savage-Dickey density ratio (Dickey & Lientz, 1970)
provides a conceptually simple approach to computing Bayes factor. Here, we review methods for
computing the Savage-Dickey density ratio, and highlight an improved method, originally suggested
by Gelfand and Smith (1990) and advocated by Chib (1995), that outperforms those currently discussed
in the psychological literature. The improved method is based on conditional quantities, which may be
integrated by Markov chain Monte Carlo sampling to estimate Bayes factors. These conditional quantities
efficiently utilize all the information in the MCMC chains, leading to accurate estimation of Bayes factors.
We demonstrate the method by computing Bayes factors in one-sample and one-way designs, and show

how it may be implemented in WinBUGS.

© 2011 Elsevier Inc. All rights reserved.

Frequently, researchers in psychological science must decide
which of possibly several theoretical viewpoints is supported by
data. For the past century, frequentist statistical methods, such
as null hypothesis significance tests and inference by confidence
intervals, have been popular in the psychological literature.
Although there have been strong arguments for the use of Bayesian
methods in psychology for over 50 years (eg, Edwards, Lindman, &
Savage, 1963), Bayesian analysis has not been nearly as popular.
In fact, there are seemingly more papers in psychology touting the
benefits of Bayesian analysis than actually using these analyses to
draw conclusions.

One historical reason for this lack of popularity is that obtaining
Bayesian quantities often requires significant computational
resources. To quantify uncertainty about a statistical parameter,
Bayesian methods marginalize over the uncertainty in all other
parameters. Marginalizing over all other parameters requires
integration over many dimensions, which is often impossible
to do analytically. The rise of approximate methods such as
Markov Chain Monte Carlo (MCMC; Gelfand & Smith, 1990;
Geman & Geman, 1984), and the widespread availability of
fast microcomputers has made integration considerably easier,
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spurring the creation of general tools to perform MCMC analysis
(eg, WinBUGS; Lunn, Thomas, Best, & Spiegelhalter, 2000). These
tools allow model builders to easily obtain approximate samples
from marginal posterior distributions for many useful and relevant
models in psychological science (Lee, 2011).

Although the problem of parameter estimation has been largely
solved by advances in MCMC methods, model selection in Bayesian
contexts remains computationally complicated. We advocate the
use of Bayes factor (Jeffreys, 1961; Kass & Raftery, 1995), which
we formally define in the next section. The Bayes factor is a
Bayesian statistic that quantifies the relative amount of evidence
provided by the data for two competing models, and is the
ratio of two normalizing constants. MCMC methods used for
parameter estimation often make use of the fact that it is possible
to sample from distributions without knowledge of normalizing
constants. For this reason, MCMC methods designed for parameter
estimation, which do not compute normalizing constants, are often
not sufficient for model selection.

A number of methods have been proposed to tackle the
problem of computing Bayes factors (Meng & Wong, 1996;
Raftery, Satagopan, Newton, & Krivitsky, 2007; Verdinelli &
Wasserman, 1995), but many of these solutions are difficult to
apply, require tailoring to specific problems, or can be unstable
in some circumstances. A bright spot among these approaches
is computation by the Savage-Dickey density ratio (Dickey,
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1971; Dickey & Lientz, 1970). Wagenmakers and colleagues
(Wagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010; Wetzels,
Raaijmakers, Jakab, & Wagenmakers, 2009) have shown that in
some situations the Savage-Dickey ratio does a reasonable job
of estimating the Bayes factor using easily-obtained samples
from MCMC chains. The fact that the method is implemented
with MCMC sampling is highly attractive; one drawback is that
the method as presented by Wagenmakers and colleagues is
effectively limited to designs with a single effect parameter,
such as a t test or regression with a single covariate. It cannot
be easily extended, for example, to model selection in factorial
designs (ANOVA) in which there are multiple effect parameters.
In this article, we discuss an alternative method for computing
the Savage-Dickey density ratio, conditional marginal density
estimation (CMDE; Chen, 1994; Chib, 1995; Gelfand & Smith, 1990).
With CMDE estimation of Savage-Dickey density ratios, Bayes
factors may be accurately and efficiently estimated from MCMC
chains for many designs, including those with multiple effect
parameters, such as in ANOVA and multiple regression contexts.
The outline of this paper is as follows: first, we discuss Bayesian
model selection via Bayes factor, and show how Bayes factors
may be computed using the Savage-Dickey density ratio. We then
introduce methods of estimating the Savage-Dickey density ratio,
including the CMDE method. The CMDE method is benchmarked
against two alternative methods in a one-sample t test design,
in which highly accurate estimates of Bayes factor are known for
suitable default priors (Rouder, Speckman, Sun, Morey, & Iverson,
2009). Thereafter, we demonstrate how the CMDE method is
applied straightforwardly to models with more than one effect
parameter, and benchmark CMDE in a one-way ANOVA design.

1. Bayes factor

In psychology, hypothesis testing is the most widely used
method of making inferences from data. The goal of hypothesis
testing is to assess the evidence provided by the data for or against
a hypothesis. In frequentist null hypothesis significance testing,
for instance, hypothesis tests assess the evidence against a null
hypothesis. In this paper, we approach hypothesis testing from
a model selection perspective, in which the null and alternative
hypotheses are treated as separate models. The goal of the analyst
is to either decide between the two models given data, or to state
the evidence for each provided by the data. Model selection by
Bayes factor is consistent with the latter goal: Bayes factor provides
a measure of the evidence yielded by the data for one model
relative to another.

One way of quantifying how well a model accounts for the
data is to calculate the probability density of the data given a
model. Let y denote observed data, and let @ denote a possibly
multivariate parameter of interest. Throughout, we use characters
in bold to represent vectors or matrices. For the moment, we
consider hypotheses formed by restricting 6 to a single point.
Let Mo and M; denote the restrictions that @ = 6y and 0 =
01, respectively, where 6, and 0, are each points, perhaps in a
multidimensional space. We can assess how well the model .M,
accounts for the data by using the marginal probability (or density)
of the data given the restriction

p |6 =16o).

This density value by itself does not tell us in an absolute sense
whether My can account for the data, because it is affected by
factors such as sample size. A more interpretable measure of model
fit is the density ratio between the two models:

P 16 =106o)
Py 6=201)

which is the ratio of the likelihood functions evaluated at 6, and
0. If the likelihood ratio is greater than 1 the evidence favors M,
and vice versa if the likelihood ratio is less than 1. Likelihood ratios
of around 1 are equivocal.

The above example is limited, because parameter values are
restricted to single points. It is more useful to consider models in
which parameters are not so restricted. When the parameter # may
take a range of values under a model .My, the density of the data is

P16 = [ bty | Om(6)do. ()
O

where @y is the parameter space of # and m is the prior
distribution of # under model M. This marginal likelihood
provides a Bayesian measure of the evidence from the data for
a model. As mentioned previously, it is more interpretable to
compare the relative evidence for two models by creating a ratio.
For any two models, denoted .M and .M, this ratio, called the Bayes
factor, is given by

_ f(,)o Poy | 00)770(00)d00  p(y | Mo)
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The Bayes factor quantifies the evidence in the data for M,
relative to .M. If the Bayes factor is greater than 1, the evidence
favors My, and vice versa if the Bayes factor is less than 1. Bayes
factors of around 1 are equivocal. Another way to understand the
Bayes factor is that it expresses how prior odds should be updated
in light of data. To see this, an application of Bayes’ theorem to the
marginal likelihood of M yields

p(Mo | ¥)P(¥)
p(Mo)

By rewriting the marginal likelihood of .M; the same way and
forming the ratio, we obtain an alternative expression for the Bayes
factor:

_ p(Mo |y) [p(Mo)
p(M1 Y[ (M)

In Eq. (3), the first term on the right-hand side corresponds to the
posterior odds of Mg relative to .M;. The second term corresponds
to the prior odds of M relative to M;. The Bayes factor is thus the
proportional increase in the odds of the model caused by observing
the data.

The Bayes factor is a natural way to quantify the evidence
provided by the data for one model over another. Since the Bayes
factor is a proportional increase in odds, it is straightforward to
interpret: a Bayes factor of 1, for instance, means the data provided
no evidence for or against either model. A Bayes factor of 2 means
the data caused the odds of .M, to double relative to what they were
before observing the data. A Bayes factor of 1/2 means that the
data caused the odds of M to decrease to half of what they were
prior to observing the data. If M corresponds to a null hypothesis,
then the Bayes factor allows the accumulation of evidence both for
and against a null hypothesis, which is not possible when using
frequentist p values.

Computing a Bayes factor for comparing any two arbitrary
models is often computationally difficult. Eq. (1) shows why
this is so. In most interesting models, the integration over all
parameters will be multidimensional. MCMC methods, which
allow for samples from the marginal posterior distribution, do
not immediately lend themselves to computing the marginal
likelihood; algorithms based on MCMC samples, such as bridge
sampling (Meng & Wong, 1996), require custom tuning in
application to avoid numerical instabilities.

The situation is considerably simpler, however, if we restrict our
attention to nested models. Let § = (#', ¢')’ denote the parameters
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of a general model, denoted M. The null model, denoted My, is
constructed by setting parameters @ to a point fy while leaving
the nuisance parameters ¢ unconstrained. This nested-model
setting accounts for the vast majority of the hypothesis tests in
psychology, including traditional t tests, ANOVA, and regression.
When the two models are nested, the Savage-Dickey density
ratio, which is computationally much simpler than other sampling
methods, may be used to compute the Bayes factor.

2. The Savage-Dickey method

For the nested-model setup above, the Savage-Dickey method
provides a convenient way to compute the Bayes factor, provided
certain conditions are met. The marginal probability of the data
under the null may be expressed as a restriction of the model M:
p(y | & = 6, Mq). Consequently, the Bayes factor for the null
model relative to the general one is:

_ pOIMe)  p |8 =00, M)
p(y|M1) py | M1)

Because all quantities are conditioned on .M, this dependence may
be dropped from the notation without ambiguity:

_ PO 10=160)
py)

An application of Bayes theorem yields
p® =6 | y)P®)

01

Bo1

0 =20y =
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Substituting and simplifying yields:
@=20
o= p oY) ()
p(0 = 6o)

Eq. (4) shows that the Bayes factor for the nested restriction
is the proportional change from the prior to the posterior in the
marginal density of @ at the point , under the general model. The
construction of the Savage-Dickey ratio is depicted in Fig. 1, which
shows hypothetical marginal prior (dotted line) and marginal
posterior (solid line) distributions for a parameter 6. Suppose
we are interested in the Bayes factor for the restriction 6 =
100 against the general model where 6 is unrestricted. The prior
density at & = 100 is 0.027. After observing data, we examine
the posterior distribution; for the purposes of computing the Bayes
factor, we are interested in the posterior density at ¢ = 100. In
this case, the density is 0.242. The increase in density from the
prior to the posterior shows that the restriction 6, = 100 is highly
plausible. The ratio of posterior density to the prior density at
6 = 100 is 0.242/0.027 = 9.1. Consequently, the Bayes factor
is BO] =9.1.

Alternatively, suppose we are interested in the restriction for
6 = 104. The prior density at &8 = 104 is 0.026, which is nearly
the same as the prior density at 100, the previous null. However,
in this case the posterior density (0.004) is much smaller than the
prior density. The Bayes factor is 0.004/0.026 = 0.17, indicating
that the unrestricted model is better supported by the data.

Typically, the exact value of the posterior density at any given
restriction is unknown. In order to compute the Savage-Dickey
density ratio, the posterior density must be estimated at the
desired restriction using approximate samples from the posterior
distribution of the unrestricted model. Because the Savage-Dickey
ratio only requires these easy-to-obtain samples, it is possible
to forget that the Bayes factor resulting from the Savage-Dickey
ratio is still a ratio of marginal likelihoods. The Bayes factor is
not a test that # = @g; it is, instead, a comparison of a model
in which @ = 6, against the unrestricted model from which the

0.4 8,=100
0.3
>
=
2 02
[0}
[m)
0.1 Posterior
Prior ... A N
00 T
T T ] T T
90 95 100 105 110

Fig. 1. A demonstration of the Savage-Dickey density ratio. See text for details.

samples were drawn. However, there are many possible models in
which @ = 6y, all differing in the possible models placed on the
nuisance parameters. One important consideration is whether the
null model implied by the Savage-Dickey density ratio is the one
we actually wish to test against.

To ensure that the Bayes factor we compute using the
Savage-Dickey ratio is the the ratio of marginal densities that we
intend, the following condition must hold for the priors under the
null and alternative:

T1(p | 0 = 0p) = mo(9).

This requirement is easily met by models which specify priors in
which the nuisance parameters are independent of the parameters
of interest. In case the priors are not independent, Verdinelli and
Wasserman (1995) suggest a correction factor that can be applied
to the Savage-Dickey ratio to yield the desired Bayes factor.

The Savage-Dickey ratio is almost always more tractable than
analytical integration over all parameters. In order to compute the
Savage-Dickey ratio, two quantities are needed: the evaluation of
the marginal prior density and of the marginal posterior density of
0 at the specific point 8y under the unrestricted model. We denote
the marginal prior density at 6, as po(6), and the marginal posterior
density at 6y as po(@ | y). In most applications, evaluation of the
marginal prior density is straightforward using analytic methods.!
The evaluation of the marginal posterior density, however, is more
complicated, as discussed below.

Wetzels et al. (2009) note that an estimate of the marginal
posterior density at a point may be obtained from the output of an
MCMC analysis. MCMC chains provide approximate samples from
the marginal posterior distribution of ; the density of the posterior
at 0y, po(0 | y), is the desired quantity. The challenge is finding
good density estimates at a point given MCMC posterior samples.
Wagenmakers et al. (2010) suggest logspline density estimation
(Stone, Hansen, Kooperberg, & Truong, 1997). In this approach,
samples from the marginal posterior density of # can be used to
build an approximation to the logarithm of the density function.
The approximation is done via a spline, and when exponentiated
provides an estimate of the density at 6y. Logspline density
estimation may be performed conveniently in the R statistical
language (R Development Core Team, 2009), and the method
generally outperforms kernel-based density estimation.? A second

1 Incase sampling methods are needed to compute the prior density, the methods
described in this paper can be used to estimate them accurately.

2 Wetzelsetal. (2009) propose that a kernel density estimator be used to estimate
the density function from the sample, and that smoothing splines be fit to these
outputs to estimate the density at the restriction point. One drawback of this
method is that there is no constraint that the density estimate at the restriction
is positive, and we found in our simulations that if the density was low (as it would
be when the general model was supported by the data), the estimate was negative
for a sizable fraction of the simulations. Negative density estimates cannot be used
to estimate the Bayes factor.
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approach comes from Wetzels et al. (2009), who use a normal
approximation to the posterior distribution. Although marginal
posteriors will not be normal in general, the Bayesian central
limit theorem (Bernardo & Smith, 2000) implies that marginal
posteriors will be asymptotically normal, and so in many cases
the assumption will yield estimates that are not too far away
from the true value. The mean and variance of the posterior of 6
are computed from the MCMC results; using these estimates of
the normal density parameters, the posterior density at 6, can be
estimated.

There are two separate potential problems with the above
two methods. The normal approximation method of Wetzels will
clearly suffer to the degree that the posterior density of the
parameter of interest is not normal. Deviation from normality,
especially in the region of the restriction of interest, will lead
to low quality (higher mean squared error) estimates of the
Savage-Dickey density ratio. It is plausible that estimates using
the normal approximation method will be low quality, especially
in low sample sizes.

The potential problem with logspline density estimation is
qualitatively different. Wagenmakers et al. have benchmarked the
logspline approach on models where 6, the parameter of interest,
describes the location of a univariate normal distribution. Although
this is an important case, and underlies the one-sample ¢ test,
most contexts demand more than restrictions of a single location
parameter. For example, one-way ANOVA posits separate location
parameters for each group, and the appropriate null model is that
all of these effects are restricted to be zero. If Savage-Dickey ratio
computation of the Bayes factor is to be broadly applicable, it is
important that methods of estimating marginal posterior densities
work well for multivariate restrictions.

Logspline density estimation does not scale well as the
dimensionality of the parameter space increases. The reason for
this is the “curse of dimensionality” (Scott, 1992). Suppose, for
instance, that we are interested in the bivariate null hypothesis
that (61,6,) = (0,0). In order to estimate the density at the
null point, we need an amount of data in some neighborhood of
(0, 0); say, between some —e and ¢ in both dimensions. Suppose
the posterior probability that —e < 6; < € is 0.01, and likewise
for 6,, and that they are nearly independent. In this case, only 1
of every 10,000 samples from the posterior distribution will be in
the neighborhood of the null hypothesis, compared with 1 out of
every 100 for each univariate hypothesis. If we add another similar
dimension, the proportion within the neighborhood of (0, 0, 0)
becomes 1 in 1,000,000. In general, obtaining quality estimates of
the density around a point when there are so few samples around
the point is practically impossible. Hence, it seems doubtful that
logspline density estimation will be broadly applicable in everyday
designs.

3. Improved Savage-Dickey estimates

Logspline density estimates and normal approximations use
marginal posterior samples of @ as input but do not rely on
samples of ¢, the parameters in common across the full and
restricted models. At first glance, using samples from # may appear
reasonable; after all, the marginal posterior density of € at 6 is
exactly the quantity of interest. Yet, the sample of ¢, in conjunction
with the data, provided all the information used to sample 6 in
the MCMC chain. Gelfand and Smith (1990) noted that they also
contain all the information available in the chain to compute the
density of @ at a point 6.

Gelfand and Smith propose the following approach for estimat-
ing the marginal posterior density at a restriction. The key insight

is that the marginal posterior samples of ¢ may be combined with
known information about the conditional distribution p(@ | ¢, y):

po@|y) = Lpo(0|¢,y)p(¢ |y)deé

= Egy [P0 | . 9)]. (5)

In practice, we do not know the form of the marginal posterior
distribution p(¢|y). But we do have MCMC samples approximating
this distribution, which enables us to approximate the expected
value in Eq. (5) by

1 T
By [Po(® 1 6,31~ = > po(6 14", ) (6)
t=1

where ¢© is the tth MCMC sample from the marginal posterior of
¢, out of T total MCMC iterations. Because the method uses the
conditional information to compute the marginal density, Chen
(1994) called the resulting estimator the conditional marginal
density estimator, or CMDE.

Gelfand and Smith (1990) use the Rao-Blackwell theorem
(Blackwell, 1947) to show that any kernel density estimator that
does not make use of ¢ will have mean squared error as large
or larger than one that is conditioned on ¢. The Rao-Blackwell
theorem shows that conditioning on a sufficient statistic will tend
to improve an unbiased estimator: the conditioned estimator will
have MSE less than or equal to the unconditioned estimator. This
is intuitive, because sufficient statistics include all the information
necessary in the data to estimate a parameter. In our case, we
seek to estimate the expected value in Eq. (5). Since the complete
sample is always sufficient, conditioning any unbiased estimator
on ¢ will tend to improve it, and will never make it worse. Although
the Rao-Blackwell theorem applies to unbiased estimators, one
would expect that the general strategy of using all the information
available to estimate a quantity would yield better estimates than
any strategy that does not. Chen and Shao (1997), for instance,
show that the CMDE consistently outperforms a kernel density
estimate in a simple constrained-parameter linear regression
example.

Computing the CMDE requires that the full conditional poste-
rior distribution p(0|¢, y) be known completely; the normalizing
constant must be known so that the conditional posterior distribu-
tion integrates to 1. Although this may appear to be a difficult re-
striction to meet, it is often possible to build models in such a way
that the normalizing constant will be known. For example, if the
prior for @ is a known form and conjugate or semi-conjugate (Gel-
man, Carlin, Stern, & Rubin, 2004), then the normalizing constant
will be known. When building the model it is sufficient to specify a
single conjugate prior - the prior on the parameter of interest - to
make using the CMDE possible. In cases where the model cannot
be formulated in this manner, a generalization of CMDE called is
possible; we address this generalization briefly in the discussion.

In this report, we assess the feasibility of CMDE across two
applications. We will show that CMDE has tremendous advantages
and outperforms competitor methods. We specifically highlight
the following critical advantages:

High quality. CMDE provides higher quality estimates of the
Savage-Dickey density ratio than other methods; these estimates
have both lower variability and lower bias.

Extension to multiple effects. CMDE is easily applied in multivari-
ate contexts where multiple parameters are restricted simultane-
ously. Consequently, it may be used broadly.

Practical ease of computation. CMDE may be easily computed
in flexible MCMC programs such as WinBUGS (Lunn et al,
2000) or JAGS (Plummer, 2003). Computation does not rely on
external routines, such as spline approximation, and there is no
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need to switch between multiple software applications. Example
WinBUGS code may be found in the Appendix.

Availability of error estimates. CMDE is a sampling-based
approach to integration. Because Monte Carlo integration is
approximate, there will be some error in the estimate of the
posterior marginal density. Fortunately, under mild conditions,
this error is guaranteed to decrease to 0 as the number of samples
is increased, but estimates based on finite numbers of samples will
always contain some error. The error in MCMC chains is difficult
to estimate, due to the fact that MCMC chains are autocorrelated.
However, there are a number of methods available for estimating
MCMC error even with autocorrelation (Heidelberger & Welch,
1983; Roberts, 1996), and these methods are applicable to CMDE
estimates as well. For example, WinBUGS offers an estimate of
MCMC error based on Roberts’ batch means method. If WinBUGS is
used to compute the CMDE and the Bayes factor, an estimate of the
MCMC error in the Bayes factor estimate is provided automatically.

The remainder of this paper comprises two applications of
CMDE to common hypotheses. The first of these is a CMDE
computation of the Bayes factor for the one-sample t test.
The computation of this Bayes factor is well understood, and
Rouder et al. (2009) provide a one-dimensional integral expression
that may evaluated to high precision by Gaussian quadrature.
Hence, Rouder et al. ’s numeric solution serves as a highly
accurate estimate against which we may compare the success
of the CMDE, logspline and normal approximation approaches.
We show that CMDE outperforms the other two approaches.
The second application is one-way ANOVA, and this application
affords assessment of CMDE for multivariate restrictions. To check
the quality of the estimates from each method, we derive an
expression for one-way ANOVA Bayes factor that involves only a
one-dimensional integral. Consequently, these integrals may be
evaluated with Gaussian quadrature, enabling a comparison of the
CMDE to a highly-accurate estimate.

4. One-sample t test

4.1. Model and priors

We first outline the one-sample t test model, and then
describe how estimates of the Bayes factor may be obtained. As
is conventional to assume, the likelihood of the data is normal. It
is convenient to parameterize the model in terms of standardized
effectsized = u/o:

Vi "% Normal(c'8, 0'2)

wherei = 1, ..., N indexes participant. We place a conventional
noninformative Jeffreys prior on 0%

2 1
(o )oc—z.
o

We must also place a prior on §, the parameter of interest in
the general model. In Bayesian parameter estimation, it is typical
to place a flat prior on unbounded parameters such as §, giving
equal prior weight on all real values. This non-informative prior
minimizes the effect of the prior on the posterior. However, for
model selection, a flat prior would be inappropriate: in fact, the
Bayes factor would not exist. The Savage-Dickey density ratio
provides insight into the reason. Instead of a flat prior density,
consider a normal prior density with very large variance. As the
prior variance increases to approximate a flat prior, the density at
any single point becomes arbitrarily small. The posterior density
at the same point, however, does not. To compute the Bayes factor
by means of the Savage-Dickey density ratio, the posterior density
at § = 0 is divided by the prior density at § = 0. Since the prior

density can be made arbitrarily close to 0, the Bayes factor can be
made arbitrarily large. With a flat prior (corresponding to infinite
prior variance) the Bayes factor thus becomes infinitely large.

To avoid this problem, Rouder et al. followed Jeffreys (1961) and
in placing an informative t distributed prior with a single degree of
freedom, also known as the Cauchy distribution, on §:

§ | r ~ Cauchy(r),

where r serves as a scale term on effect size that is set a priori by
the analyst. The scaled Cauchy has density function

1
p(6|r):72, 5§ eR.
Tr [l + (é) ]
Rouder et al. choose a value of r = 1 as a default value, which

corresponds to a standard Cauchy prior on effect. Liang, Paulo,
Molina, Clyde, and Berger (2008) note that the Cauchy distribution
is the result of a mixture of normal random variables, if the normal
random variables have variances (denoted here by g) drawn from
an inverse gamma distribution:

S | g ~ Normal(0, g)

1 r?
g ~ Inverse Gamma | -, — | .
22

This inverse gamma distribution has density function
_1 o3 r?

p@Elr =rn2g 2exp{—}, g>0.

g

Integrating out g yields a marginal Cauchy distribution on § with
scaler.

4.2. Benchmark Gaussian quadrature computation

The Bayes factor for the t test model may be found by computing
the ratio of the marginal likelihoods under .My and M:

Mo :6=0
My : 8 ~ Cauchy(r).

Rouder et al. show that the Bayes factor may be expressed as a one-
dimensional integral, and consequently can be evaluated using
Gaussian quadrature. An easy-to-use web applet is provided at
http://pcl.missouri.edu/bayesfactor. To use this applet, researchers
input the t statistic and sample size; the applet outputs the
corresponding Bayes factor. The results from numeric integration
by Gaussian quadrature are highly accurate and serve as a
benchmark to evaluate the Savage-Dickey density ratio estimation
methods.

4.3. Savage-Dickey density ratio estimation

The Savage-Dickey density ratio comprises two elements: an
evaluation of the marginal prior and of the marginal posterior at
the restriction. The evaluation of the marginal prior at § = 0 is
straightforward. Because the marginal prior distribution of § is a
scaled Cauchy distribution, the prior density at 0 is

1
Po(8) = —.
rm

To estimate the marginal posterior density, we sampled from
the marginal posterior distributions of all parameters using
Gibbs sampling (Geman & Geman, 1984; see Rouder & Lu,
2005) for a tutorial for psychologists). We implement the Gibbs
sampler in an R package available from the first author’s website
at http://drsmorey.org/research/rdmorey. Although we chose to
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implement the Gibbs sampler in R, any method of sampling from
the marginal posterior distributions will enable the computation
of the CMDE, including WinBUGS and JAGS. An example showing
how to estimate the t test Bayes factor using the CMDE estimate
using WinBUGS is given in the Appendix.

Logspline density estimates were obtained by submitting the
MCMC samples of § to the d1logspline () routine in the logspline
package in R (Stone et al., 1997) with default settings. The normal
approximation method was implemented as in Wetzels et al.
(2009), by matching the mean and variance of the MCMC samples
8 and finding the density at O of the resulting normal distribution.

The CMDE estimate of the marginal posterior density at § =
0 was computed by MCMC integration of the full conditional
posterior density. The conditional posterior density of § is

y N 1
8|02, g,y ~ Normal Y ) (7)
o N+§ N+§

The proof of this statement is straightforward and omitted for
brevity. The value of this density at § = O is

: Nty N2
po610°.8,¥) = . PV N,
u 2 (N n é) o2
On every iteration of the MCMC chain, we compute Eq. (8) given the
values of 0% and g for that iteration. This yields a chain of values,

the mean of which is the CMDE, by Eq. (6). We denote the CMDE
marginal posterior estimate as p(§ | § = 0, y):

(8)

. 1¢
Do 13) =2 pod | (037,29, ).
t=1

4.4. Results

In order to test the three methods of estimating the Sav-
age-Dickey ratio, we generated data with a range of observed ef-
fect sizes and sample sizes (16 and 256), and estimated posterior
quantities for chains of varying numbers of iterations (100 and
10,000). Because the t test Bayes factor only depends on t, our data
were 60 t values in equal increments from O to 6. For each simu-
lated data set, we computed the three Savage-Dickey Bayes factor
estimates, as well as the benchmark Gaussian quadrature value.
The error in each of the three Savage-Dickey methods was the ra-
tio of the sampling-based estimate to the benchmark quadrature
value. For instance, if a logspline estimate of the Bayes factor was
10 times the value obtained from Gaussian quadrature, the corre-
sponding Bayes factor error was 10.

Fig. 2A shows the error in the Bayes factor for the logspline
method as a function of the Gaussian quadrature estimate for M =
100 MCMC iterations. The open circles show the error when sample
size N = 256; the gray triangles show the error when N = 16. For
both sample sizes, the logspline estimates show a marked pattern:
as the Bayes factor decreases (that is, as the evidence favors the
alternative over the null), estimates of the Bayes factor become
biased toward the null model. In extreme cases, this bias toward
the null model can be more than a factor of 10,000.

One possible way of improving the logspline density estimates
is to increase the number of MCMC iterations. A sample of M =
100 MCMC iterations is quite small, and would not necessarily
be expected to yield good estimates of the Bayes factor. Fig. 2B
shows the error from the logspline estimates for M = 10,000
MCMC iterations, an increase of two orders of magnitude. Although
we have drastically increased the number of MCMC iterations, the
logspline estimated Bayes factors show the same distortions as

with M = 100. Although the bias when M = 10,000 is less
than when M = 100, the errors can still reach factors of 1000.
Increasing the number of iterations does increase the accuracy of
the estimates, but the logspline does not offer an estimate of error.
In practice, researchers have no way of assessing the accuracy of
their logspline-derived Bayes factor estimates.

Figs. 2C and D shows the error for the normal approximation
method for M = 100 and M = 10,000 MCMC iterations,
respectively. Estimates of the Bayes factors are greatly improved
over the logspline method. Even so, there is a systematic bias for
low sample sizes (N = 16; gray triangles) in which estimated
Bayes factors are biased toward the null model. This bias is
a direct consequence of the normal distribution being a poor
approximation to the posterior for low sample sizes; the bias exists
regardless of the length of the MCMC chain, but is most noticeable
for M = 10,000 because the error due to MCMC sampling is small.

Errors in estimating the Bayes factor using the CMDE method
with M = 100 and M = 10,000 MCMC iterations are shown
in Figs. 2E and F. The CMDE method is superior to the other two
methods over the entire range of Bayes factors considered. Low
sample sizes, which led to bias in the normal approximation, lead
only to a slight increase in the variability of CMDE estimates;
however, the CMDE appears unbiased across all Bayes factors. The
lack of bias from the CMDE method is not surprising. Because
the CMDE is the sample mean of random variables that all have
the same expected value, and this expected value is exactly the
quantity of interest, it is guaranteed to be unbiased after the initial
burn-in of the MCMC chain. This is a guarantee not provided by
the other methods. However, the CMDE also outperforms the other
methods in efficiency: the CMDE estimates at just 100 MCMC
iterations are nearly as high-quality as the estimates of the normal
approximation at 10,000 samples, and are much higher quality
than the logspline estimates at 10,000 samples.

One surprising result from the foregoing simulations is the
relatively poor performance of logspline density estimation in
this context. Previously, our concern with the logspline method
was generalizing the technique for multivariate null hypotheses,
such as in ANOVA. Here, we see logspline does poorly even in
a univariate case. Using spline density estimates in multivariate
contexts is computationally intensive; given the poor univariate
results and the difficulty of extending splines, we eliminate the
splines from consideration in our next example. In the next section,
we evaluate the performance of the remaining two Savage-Dickey
methods, normal approximation and CMDE, in a multivariate
context.

5. One-way, between-subjects ANOVA

Our first example showed how the CMDE method can be
applied to Rouder et al. 's t test Bayes factor. Although the t test is
one of the first statistical tests that students learn in introductory
statistics classes, it is not as commonly used in practice as other
statistical tests, such as ANOVA. The main feature of ANOVA is a
multivariate null hypothesis in which all group effects are zero. We
assess the performance of both normal approximation and CMDE
by comparing each to the following Gaussian quadrature solution.

5.1. Model and priors

The one-way ANOVA model we present here is a generalization
of Rouder et al. ’s t test. Following ANOVA conventions, we assume
that the ith (i = 1,..., N;) observation inthejth G = 1,...,])
group is normally distributed:

yij ~ Normal(u + §jo, 0'%)
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Fig. 2. Multiplicative error in Bayes factor estimation in the t test model for three methods: Logspline (left column), normal approximation to the posterior (center column),
and CMDE (right column). The error is the ratio of the estimated Bayes factor to the true Bayes factor. For each method, the top and bottom plots show errors for 100 and
10,000 MCMC iterations, respectively. Sample size N = 16 is represented by the gray triangles; N = 256 is represented by the black circles.

where  is the grand mean, o is the error variance, and § =

(81,...,6;) is the vector of standardized effects for each group.
Under the null model My, § = 0.

We first place priors on x and o2. Because these parameters are
common to both models, we place noninformative Jeffreys priors
on both:

[n] o1
1
2
[O' ] X ;
Of critical importance is the prior on § under the unrestricted
model. Here, we choose a multivariate generalization of the Cauchy
distribution, the multivariate Student’s t(1) distribution (Kotz &
Nadarajah, 2004):

§~t(v=1,%=r),

where v denotes the degrees of freedom of the multivariate t
distribution, ¥, denotes a covariance matrix, and I; denotes the
J x J identity matrix. This multivariate t distribution has density
function
J+1
1" (]i]) n_Tr_]

2
pt|r) =—"——77"

==
(1+f—2‘*)

In the t test model, we made use of the fact that the Cauchy dis-
tribution arises from a mixture of univariate normal distributions
with variances drawn from an inverse gamma distribution. A gen-
eralization of this fact applies in the multivariate case. If

8 | g ~ Multivariate Normal (0, gI;), and
1 12

g ~ Inverse Gamma | -, — |,
2 2

then the marginal prior distribution of § is a multivariate Student
t(1, ).

5.2. Benchmark Gaussian quadrature computation

The Bayes factor for balanced designs (N; =
given by

N for all j) is

Bo1 =

S P g+ 1) k- g
Nl eXp—E(gnL) g

where
Ng
J-1 ’
(Njf j) F+1
and F is the F statistic available from conventional ANOVA analysis
(Liang et al., 2008).2 Because the integral is one-dimensional, it
may be evaluated to high precision with Gaussian quadrature

and will serve as a benchmark for evaluating the Savage-Dickey
methods.

K=1+

5.3. Savage-Dickey density ratio estimation

The Savage-Dickey density ratio comprises two elements: first,
an evaluation of the marginal prior, and second, the marginal
posterior at the restriction. Once again, the evaluation of the
marginal prior at § = 0 is straightforward. Because the marginal
prior distribution of & is a multivariate ¢ distribution, the prior
density at 0 is

po(8) =T (J—_; 1) )

3 The one-way ANOVA Bayes factor may be derived from Eq. (13) in Liang et al.
(2008), with the prior in their Eq. (15), substituting for n the within-group sample
size N. See also Zellner and Siow (1980).



R.D. Morey et al. / Journal of Mathematical Psychology 55 (2011) 368-378 375

A Normal approximation; M=100 C CMDE; M=100
S 10 .°° S 10
© 8 13}
g o . g
(7] o ° ° (%]
g ) 8 o’ 008 g0 200 g)*
K 1 s - ” .,S?“v : 8
£ ° 5°° ° fooih i B O £
S e LT, s ° S )
w 1104, . . oo b 1/10
T T T T T T T T T T T T T T T T
1/1000000 1/1000 1 100 1/1000000 1/1000 1 100
Bayes factor Bayes factor
B Normal approximation; M=10,000 D CMDE; M=10,000
S 10 S 10
Q Q
£ g
[%2] [%2]
[0 (0]
> >
© 1 T © 1 f46ooesssosses
@ Egaggggjﬁafﬁsgg;h > vom @
S S
w 1/10 b 1/10
T T T T T T T T T T T T T T T T
1/1000000 1/1000 1 100 1/1000000 1/1000 1 100

Bayes factor

Bayes factor

Fig. 3. Errors in Bayes factor estimation in the one-way ANOVA model for two methods: normal approximation to the posterior (left column), and CMDE (right column).
For each method, the top and bottom plots show errors for 100 and 10,000 MCMC iterations, respectively. Sample size N = 16 is represented by the gray triangles; N = 128

is represented by the black circles.

To estimate the marginal posterior density at § = 0, we
again derived full conditional distributions for all parameters
and used Gibbs sampling to sample from the marginal posterior
distributions (code provided at the first author’'s website). We
computed the normal approximation in the same way here as in
the previous t test example; the only difference is that in this
example we fit a trivariate normal (three means and six covariance
parameters) rather than a univariate normal. Computing the CMDE
estimate is similar to the t test case. The full conditional posterior
distribution of § is

8| 1,02, g,y ~ Multivariate Normal (ms, Xs) (10)
where
1\!
Y5 = (z/z+4,) , (11)
g
1 4
s = ;ESZ ¥ —ul), (12)

and Z is the ZL] N; by J design matrix mapping the vector of
observations y to their respective groups. Proof of this fact is
straightforward and is omitted for brevity. The conditional density
atd =0is

I 1 1 _
po(8 | 0% g.y) = 2n) 2 |%s| 2 exp{—zu’zglu}- (13)

On every iteration of the chain, we compute the quantity in Eq. (13)
given the values of 02, g, and u on that iteration of the chain. The

marginal posterior estimate at the restriction is then simply the
mean of those values across all iterations, as in Eq. (6).

5.4. Results

To evaluate the quality of estimates from the normal approx-
imation and CMDE methods, we generated data with a variety of
sample sizes N, for ] = 3. Bayes factor error is once again defined
as the multiplicative error relative to the quadrature result. Fig. 3A
shows the error in the normal approximation for M = 100 MCMC
iterations. Gray triangles and black circles show the Bayes factor
with N = 16 and N = 128 participants per group, respectively.
For all Bayes factors from the normal approximation, the estimates
appear to be biased toward the alternative model. The bias does
not decrease appreciably when the number of MCMC iterations is
high (M = 10,000 iterations, Fig. 3B). We suspect that this bias
in estimation is due to bias in the estimation of the variance and
covariance parameters. Because samples from MCMC chains are
not independent of one another, estimates of variances and covari-
ances will be biased. Biased estimates of the variance and covari-
ance terms will lead to biased Savage-Dickey estimates from the
normal approximation.

Figs. 3C and D show the error in the CMDE Bayes factor
estimates for M = 100 and M = 10,000, respectively. The
estimates are highly accurate, even with only 100 MCMC iterations.
As expected, they are not biased, and have significantly lower
variance than the estimates of the Bayes factors obtained by the
normal approximation. For the one-way ANOVA Bayes factor, the
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CMDE yields much higher quality estimates than the multivariate
normal approximation.

5.5. Bayes factor vs. p-values

These computations provide an opportunity to compare
inference by Bayes factor with inference by p-values from F
statistics in one-way designs. Fig. 4 shows the one-way ANOVA
Bayes factor as a function of the sample size.* Each line represents
a different observed effect size n?, the proportion of variance
accounted for by the ANOVA:

2 Ssbetween

n .
SStotal

When n? = 0 the data are highly consistent with the null model,
and increasing n? gives increasing evidence for the unrestricted
model. For these small effect sizes, at small sample sizes the Bayes
factor reveals evidence for the null hypothesis, as expected. For
n* = 0, the evidence for the null hypothesis is at about 10 to 1
at a sample size of 8 and increases to 100 to 1 at a sample size of
128. For n* > 0, the Bayes factor begins to accumulate evidence
for the alternative hypothesis as the sample size increases.

Fig. 4 reveals the miscalibration of p values: p values tend to
overstate the evidence against the null model. The inability of p
values to consider the distribution of the test statistic under the
alternative hypotheses biases them against the null model (Berger
& Sellke, 1987; Sellke, Bayarri, & Berger, 2001). The square points in
Fig. 4 show combinations of n? and N that yield significant p values.
Several of these significant p values correspond to equivocal Bayes
factors, or even Bayes factors favoring the null model. Although a
frequentist would take the significant p value to mean that the null
hypothesis can be rejected, the Bayes factor shows that when the
reasonable alternative models are considered, the evidence against
the null is sometimes marginal at best. The miscalibration of p
values will grow with the sample size, due to the Jeffreys-Lindley
paradox (Lindley, 1957).

6. Discussion

In the preceding development, we have described the CMDE
method for obtaining efficient estimates of posterior densities.
The CMDE method is useful in computing the Bayes factor via
the Savage-Dickey method in the case where the normalizing
constant on the parameter of interest is known. In general, it will
be expected to outperform other methods that do not make use of
all the information in the MCMC chain.

We especially expect the CMDE to outperform the kernel
density estimates, logsplines, and the normal approximation,
because the latter methods ignore information. For kernel density
estimates and logsplines, information is ignored when most of
the posterior density of @ is far away from the null value 6.
If samples of @ are far away from 6, we obtain only poor
information about the density around 6y. Every iteration of the
chain contains information about the density at 6, through the
full conditional distribution of #, which is ignored. Likewise,
the normal approximation ignores the fact that the marginal
distribution of @ can be thought of as a mixture of full conditional
distributions (Gelfand & Smith, 1990). The CMDE uses the form
of this mixture, while the normal approximation makes the
unnecessary assumption that the resulting mixture is normal.

4 Group “data” for Fig. 4 were (N + 1)-tiles of the standard normal distribution,
with means manipulated to yield a given observed effect size.
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Fig. 4. The one-way ANOVA Bayes factor for ] = 3 groups as a function of sample
size in a group. Each line represents a different observed effect size n2. Circles show
sample sizes and 52 values that are nonsignificant by an F test at @ < 0.05; squares
show significant tests.

There are, however, some situations where CMDE is not
preferred. One example is when sampling methods themselves
are unnecessary. Consider, for instance, the logic underlying the
normal approximation method: the joint posterior distribution
will be asymptotically distributed as a multivariate normal, with
a mode at the maximum likelihood estimate and covariance
matrix that is the inverse of the Fisher information (Bernardo &
Smith, 2000). If one is willing to assume normality, a reasonable
estimate of the marginal density can be had with no sampling
at all, and the CMDE will be unnecessary. Avoiding sampling can
speed up inference dramatically, for an often modest penalty in
accuracy. A second example is when the marginal likelihood may
be analytically integrated across some parameters to reduce the
dimensionality of the problem. We have used this approach to
construct our benchmarks, and clearly they are superior to any
sampling-based approach. In fact, it is often possible to use priors
that greatly simplify the direct computation of marginal likelihood;
an instructive example is the use of a multivariate Cauchy prior on
effects by Liang et al. (2008) for linear models.

There are important extensions of the basic idea of using
conditional marginal estimation, discussed next. In the first
extension, we use conditional quantities to estimate Bayes factors
where the null region is an area rather than a point. In the second
extension, we discuss a generalization for the case in which the
normalizing constant on the parameter of interest is unknown.

6.1. Extension 1: area null hypotheses

Although the CMDE is employed here to estimate densities at
a point, the general strategy of using conditional quantities to
estimate marginal quantities extends beyond the Savage-Dickey
ratio. Wetzels, Grasman and Wagenmakers (2010) note that the
Savage-Dickey density ratio may be thought of as a special case
of the encompassing prior approach (Klugkist, Kato, & Hoijtink,
2005). Encompassing priors are useful when two hypotheses for
comparison are nested within a more general model.

Consider the one-sample t test model defined previously.
Morey and Rouder (in press) constructed tests in which under the
null, the parameter of interest was restricted to a small equivalence
range A = {6 : §; < § < &,}. The two models to be compared are:

My:5€A
M5 €A
8 ~ Cauchy(r).
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Because typically A would include 0, M, and M; are the models
where § is “negligible” and “substantial”, respectively. Morey
and Rouder used approximations that required no sampling to
compute the corresponding Bayes factor.

An alternative computational approach, the encompassing
prior approach, uses the fact that the two models are nested
within the “encompassing” model M; : § ~ Cauchy(r). Klugkist
et al,, for instance, suggest using MCMC methods to sample from
the posterior distribution of § in the encompassing model, and
computing:

Count of MCMC samples for whichd € A p(d€Aly)
Count of MCMC samples for whiché ¢ A p(S €A |y)

The ratio of these two counts is approximately the posterior odds
of § € Aversus § € A. The Bayes factor can be obtained by dividing
the posterior odds by the prior odds, as in Eq. (3).

The method of simply counting the regions samples fall in,
however, ignores the rich information in the MCMC chain. There
is information in every iteration of the MCMC chain about the
conditional posterior probability that § € A, and this information
may be used to estimate the marginal posterior odds. Because the
form of the conditional distribution for § is known (we used it to
compute the CMDE), we can compute the conditional posterior
probability of Mp:

Su — s & — s

Pr(M, | 02, g,y) =& | — }—cp[ ]

(Mn 0%, 8,9) [ N N
where @ represents the CDF of the standard normal distribution
and wus and ts5 represent the mean and variance of the full
conditional distribution of § from Eq. (7).

The posterior probability of model M, is easy to estimate,
given samples of o2 and g obtained using MCMC techniques. The
following estimate is analogous to the CMDE, for the area null:

1< 8u — g 8 — g
Pr(Mn|y)~¥Z Q| —— || —F—

t=1 /‘Es([) /Ta(t)

From this estimate, the Bayes factor test M, versus M; is trivial
to compute given the prior odds. As a demonstration, we provide
WinBUGS code to estimate the Bayes factor in the Appendix. In
general, when computing Bayes factors using the encompassing
approach, the full conditionals should be used, if available. Similar
logic can be used to estimate credible regions, posterior means,
posterior variances, and other posterior quantities.

6.2. Extension 2: unknown normalizing constants

Computation of CMDE is contingent on knowing the nor-
malizing constant of the full conditional distribution of the pa-
rameter of interest. In many Bayesian analyses, however, these
full-conditional posterior normalizing constants are not all known.
Hence, it may seem that CMDE is too specialized to be of general
interest. However, we note that the CMDE does not require that
all normalizing constants be known; rather, the CMDE simply re-
quires that a single normalizing constant be known: the normal-
izing constant for the full conditional on the parameter of inter-
est. The knowledge of the normalizing constant can be assured
by making the prior on the parameter of interest conjugate to the
likelihood. Conjugate priors are known for many common models
(Tanner, 1998), and if a model lacks a conjugate prior on the pa-
rameter of interest, then the model may be slightly modified to ac-
commodate the requirements of CMDE.

In cases where this condition cannot be met, Chen (1994) sug-
gests a generalization of the CMDE method that uses an impor-
tance sampling method to estimate the marginal density, called

importance-weighted marginal density estimation (IWMDE). Chen
shows that the CMDE has the lowest asymptotic variance of all
IWMDEs, but argues that in some cases the IWMDE would still be
preferable, such as if the CMDE is difficult or costly to compute.
Further, Chen and Shao (1997) show that the IWMDE outperforms
akernel density estimate in a constrained-parameter linear regres-
sion example. Thus, even in cases where the CMDE cannot be used,
the basic logic of the CMDE may still be used to obtain efficient es-
timates of Bayes factors or other desirable posterior quantities.

7. Conclusion

In foregoing examples, we have applied conditional marginal
density estimation of Savage-Dickey ratios to compute Bayes
factors. We show that this approach is tractable for a one-
sample t test and one-way, between-subjects ANOVA. Bayes
factors obtained via CMDE are computationally convenient, and are
far more accurate than previously recommended Kkernel density,
logspline, or normal approximations methods. In cases where
the necessary normalizing constant for computing the CMDE is
unknown, generalizations of the CMDE are applicable (Chen, 1994).

CMDE is an application of a more general strategy of using
conditional quantities to estimate marginal ones with MCMC.
This theme extends broadly to other situations, such as testing
null hypotheses that are areas instead of points. In general,
whenever a marginal quantity is desired from an MCMC chain, the
corresponding conditional quantity should be used to compute it
if possible. Otherwise, information in the MCMC chain is ignored,
leading to inefficient estimates of the desired quantity.

An R package to perform sampling and compute Bayes factors
for the applications in this paper is available from the first author’s
website at http://drsmorey.org/research/rdmorey.

Appendix. Computing Bayes factors in WinBUGS

One of the benefits of the conditional-marginal approach is
that Bayes factors may be naturally computed in software like
WinBUGS. In this Appendix, we demonstrate how this can be done
using the t test implemented in WinBUGS.

To compute a Bayes factor based on a kernel density or a
spline requires extra computation, typically in a separate software
package; for example, Wetzels et al. (2009) used R to compute
Bayes factors from Gibbs sampler chains obtained from WinBUGS.
Using the conditional-marginal approach, the marginal quantities
are computed from the conditional quantities. WinBUGS uses
Gibbs sampling to compute chains of conditional quantities,
making it possible to add extra code to the WinBUGS model to
obtain CMDE estimates.

We demonstrate this in the WinBUGS code below. In addition to
the standard model declaration, we define variables which enable
us to compute the conditional quantities of interest.

model

{
T

# For model
T

for(i in 1:N)
y[i] ~ dnorm(mu, prec);
mu ~ dnorm(0,invgxprec);
prec ~ dgamma( precShape, precRate);
# rsqr = r*2
invg ~ dgamma(.5,rsqr/2);

HHHHHHE
# For Bayes factors
A




378 R.D. Morey et al. / Journal of Mathematical Psychology 55 (2011) 368-378

# Conditional precision and mean of delta
precDelta <— invg + N
meanDelta <— ybarxsqrt(prec)=N/precDelta

# log of conditional density of delta at 0
logPostDensDelta <— —0.5xlog(2«pi/precDelta)—
0.5«precDeltaxpow(meanDelta,2)

# Divide conditional density by prior density
# The mean of this chain will estimate the JZS BF
BFpoint <— exp(logPostDensDelta — logPriorDensDelta)

# Conditional area between bounds
postAreaDelta <— phi((deltaUpper — meanDelta)xsqrt(precDelta))—
phi((deltaLower—meanDelta)*sqrt(precDelta))

# Divide the conditional area by prior area

# The mean of this chain will estimate the encompassing BF

BFarea <— postAreaDelta/(1—postAreaDelta)/
(priorAreaDelta/(1—priorAreaDelta))

The first part of the WinBUGS model declaration above
defines the one-sample t test model, with the substitution of
precisions for variances, standard for WinBUGS, and gamma prior
on 1/0? instead of the Jeffreys prior. Sufficiently small values for
precShape and precRate can be chosen such that the Jeffreys
prior is approximated.

The second part of the WinBUGS model declaration contains
variables used to compute the Bayes factors corresponding to two
hypothesis tests: the point null and the area null. To test the
point null hypothesis § = 0, we may use the result in Eq. (8),
computing the CMDE in the WinBUGS code. The first two lines
are the conditional posterior precision and mean for §, which we
use to compute the conditional density at 0, LlogPostDensDelta.
The logarithm of the prior density at 0 is then subtracted, and the
result is exponentiated to yield a density ratio in BFpoint. We
can also test the area null hypotheses described in the discussion
of this paper. The full conditional probability that § is “negligible”
is computed in postAreaDelta, which is then used to compute
the Bayes factor of the “negligible” model versus the “substantial”
model.

Once the model is analyzed in WinBUGS the JZS point null Bayes
factor and the area null Bayes factor will be well-estimated by the
mean of the BFpoint and BFarea chains. Moreover, WinBUGS
gives an estimate of the Monte Carlo standard error by default,
which provides researchers with a measure of the error in the
Bayes factor estimate.
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