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Perceiving the motion of an object is thought to involve two stages: Local motion energy is measured at each
point in space, and these signals are then pooled across space to build coherent global motion. There are sev-
eral theories of how local-to-global pooling occurs, but they all predict that global motion perception is a con-
tinuous process, such that increasing the strength of motion energy should gradually increase the precision of
perceived motion directions. We test this prediction against the alternative that global motion perception is
discrete: Motion is either perceived with high precision or fails to be perceived altogether. Data from human
observers provides clear evidence that, whereas pooling local motion energy is continuous, the segmentation
of local signals into coherent global motion patterns is a discrete process. This result adds motion perception
to the growing list of processes that exhibit evidence of all-or-none visual awareness.

Public Significance Statement
Visual perception requires that objects are isolated from other objects, a process that is accom-
plished in part by analyzing motion energy across space. For example, although individual parts of
a running dog may be moving in many directions at any moment, all of them share motion energy
in the direction he’s running, which helps the visual system to build the perception of a coherently
moving object. This global motion process develops early in life, and deficits in it have been identi-
fied in disorders including autism, dyslexia, and schizophrenia. Whereas current theories of global
motion perception predict that motion perception is analog, taking on any value from weak to
strong, here we show that it is discrete: coherent motion is either perceived nearly perfectly, or not
at all. This finding suggests that current models of global motion perception, and theories of why
deficits in this process occur, may require substantial revision.
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A fundamental goal in the study of perception is to understand
how physical stimuli map on to conscious awareness. Early
researchers including Leibniz (see Boring, 1950) and Fechner
(1860) proposed a perceptual threshold that causes perception to
be discrete: a weak stimulus is either experienced completely or
not at all (see Rouder & Morey, 2009). This discrete theory was
later formalized into mathematical models (Blackwell, 1953;
Stevens, 1972), which have been crucial for theory development
across many domains. However, the idea of a perceptual thresh-
old was largely discarded in favor of continuous models with the
advent of signal detection theory (Green & Swets, 1966), which

assumes that all stimulation leads to some perceptual strength
that increases with increasing signal. Many contemporary mod-
els of perception follow this continuous framework (Knill &
Richards, 1996; Ma, 2010). However, the question of whether
mental processes are continuous or discrete has become the focus
of recent work, which includes evidence for discrete perception
(Swagman et al., 2015), discrete working memory (Rouder et al.,
2008; Zhang & Luck, 2008), and discrete long-term memory
(Province & Rouder, 2012). Determining whether conscious
experiences are continuous or discrete is a critical step toward
understanding the processes that underlie perceptual and cogni-
tive functions.

Theories of visual processing have been especially rooted in the
assumption that perception is continuous. For example, a crucial
step in vision involves determining how objects are moving
through space. Most theories of how motion perception is
achieved assume that motion energy is first measured at each point
within the visual field, and that this local motion information is
represented in early cortical visual areas (Hubel & Wiesel, 1968).
However, this noisy local motion energy must then be used to
somehow identify the overall motion directions of coherently
moving objects. Such global motion directions are thought to be
computed in midlevel cortical visual areas (Britten et al., 1992) by
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pooling local motion signals across space within an object
(Heeger, 1987; van Santen & Sperling, 1984). There have been
several proposals regarding how this pooling occurs, (see Webb et
al., 2007), but critically, all such pooling models predict that
motion perception is continuous: the accuracy with which local
signals can be pooled to generate a global signal should gradually
increase with increasing global motion energy. Here we test this
prediction against the alternative possibility that global motion
perception is a discrete, all-or-none process whereby you either
see global motion precisely or fail to see global motion altogether.
In typical studies of global motion perception, participants view a

field of moving dots in which most dots move in random directions,
while some move in a single coherent direction (see Figure 1A). The
number of coherently moving dots determines the strength of the
global motion signal, and the global direction can be identified above
chance even when only 5% of the dots are moving coherently (Scase
et al., 1996). Increasing coherence leads to better motion identifica-
tion performance, which is typically measured as accuracy in a dis-
crimination task (e.g., leftward vs. rightward motion). Here we
measure performance by instead asking participants to report their
perceived global motion direction, which allows us to compare theo-
ries of how performance varies with global motion coherence. If
global motion perception is continuous as predicted by local-pooling
theories, then increasing coherence should produce gradual increases
in the precision of motion responses, as pooling more signal dots pro-
duces more precise representations (see Figure 2B). Alternatively, if

global motion perception is discrete, then responses will arise from a
mixture of pure guesses when motion perception fails and highly
accurate responses when it is successful (see Figure 2A). Moreover,
increasing coherence should only affect the probability of successful
motion perception, whereas the precision of responses on successful
trials should remain constant (see Figure 2C). These predictions of
continuous verses discrete motion perception were tested by con-
structing formal models of motion identification responses and com-
paring their ability to account for various stimulus conditions across
five experiments. The results reveal a striking dissociation: motion
perception is discrete when it is accomplished by segmenting local
motion energy into signal and noise but is continuous when local
motion directions are pooled to derive an average direction.

Experiments 1a and 1b

Method

Participants

Thirty-one adults participated Experiment 1a (22 women, Mdn
age = 19), and thirty participated in Experiment 1b (17 women,
Mdn age = 19), in exchange for course credit. Simulation studies
suggest that this sample size provides for highly reliable model re-
covery (see Table S1 in the online supplemental material). One
participant in Experiment 1a did not finish the experiment, and for

Figure 1
Stimuli and Design for Experiments 1 Through 3

A B

C Stimulus Response Feedback

500 ms

ITI

1,000
or

500 ms 500 ms

Note. Transparent motion stimuli (A) are composed of noise dots with random directions and some proportion of signal dots
that all move in the same direction (termed coherence). Gaussian motion stimuli (B) are composed of dots with motion directions
sampled from a circular Gaussian distribution, and coherence is defined by the standard deviation of that distribution. The trial
structure (C) was similar for all experiments. See the online article for the color version of this figure.
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four participants in Experiment 1a and four in Experiment 1b, a
pure-guessing model (uniform distribution) fit response errors bet-
ter (DBIC . 3) than a model that also allowed for target
responses, suggesting that they did not follow task instructions.
Analyses were conducted on the remaining 26 participants in
Experiment 1a and 26 in Experiment 1b, respectively. All studies
were approved by the Mississippi State University Institutional
Review Board.

Stimuli

The Psychophysical Toolbox (Kleiner et al., 2007) for Octave
(Eaton et al., 2020) running on the Linux operating system was
used to display stimuli on 24-in. LCD monitors (BenQ, Model
Number XL2420-B). Motion stimuli comprised small round white
dots spanning approximately .18 visual angle (created using antia-
liasing). Dots were presented on a black background within a circu-
lar aperture spanning 18 to 98 visual angle. Dots had an average
density of 3 dots/degree2 and moved at a rate of 58/s. Dots had a
limited lifetime, each presented for 200 ms (with random initial life-
time) before being repositioned to a new random location. Dots that
reached the aperture boundary were repositioned to the opposite
side of the aperture. Each dot followed a linear trajectory, with
motion direction that could be one of two types: signal dots all
moved in the same global motion direction, whereas noise dots
moved in random, uniformly distributed directions (see Figure 1A).
This type of motion stimulus has been referred to as “transparent”
motion (Schütz et al., 2010), because the signal dots appear to form
their own moving surface. Global motion coherence is defined as

the percentage of dots assigned as signal, such that higher coher-
ence yields a higher global motion signal to noise ratio.

Procedure

The structure of a trial is shown in Figure 1C. A white cross
(.48) was presented at the center of the screen throughout the
experiment, and participants were asked to maintain fixation
throughout the experiment. Motion stimuli were displayed for
1,000 ms (Experiment 1a) or 500 ms (Experiment 1b). Following
the stimulus, an arrow (3.58) appeared, emanating from fixation
with a random orientation. Participants used a computer mouse to
orient the arrow in the global motion direction of the stimulus and
clicked the mouse button to confirm their response. The response
period (median response time = 1.80 s) effectively imposes a brief
interval during which participants must retain the motion direction
in working memory. However, any effect of this memory require-
ment is likely to be small, as single feature values can be retained
in memory for extended periods of time with little loss of precision
(Magnussen et al., 1991). Moreover, if there is any loss of preci-
sion due to the memory interval, the effect should be similar across
coherence conditions, such that any effect of coherence on per-
formance does not reflect the memory requirement. Following
confirmation of their response, a blue arrow pointing in the true
global direction was presented for 500 ms to provide performance
feedback. The next trial began after a 500-ms intertrial interval,
and a break was provided every 80 trials.

Participants completed 20 practice trials, followed by 800 ex-
perimental trials. On each trial the global motion direction was
randomly sampled from a uniform distribution (08 to 3608).

Figure 2
Model Predictions

Error in reported global direction
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Note. According to the mixture model (A), when the global motion direction is perceived response errors follow a von Mises
distribution centered at zero, with standard deviation (SD) that measures the precision of these reports. When participants fail to
perceive the global motion direction entirely, response errors follow a uniform distribution. When averaged over trials, response
errors follow a mixture of these two distributions (solid line). The continuous model predicts that only SD should vary with
manipulations of motion coherence (B), whereas the discrete model predicts that only the probability of being in the guessing
state should vary with coherence level (C). See the online article for the color version of this figure.
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Coherence levels (10%, 15%, 22%, 33%, and 50%) were sampled
with even frequency and randomly ordered across trials, providing
160 trials for each coherence condition. Pilot studies were con-
ducted to identify coherence levels that resulted in highly accurate
motion identification performance, and those that resulted in very
poor performance, while avoiding ceiling and floor effects. These
values served as coherence for the easiest and most difficult exper-
imental conditions, respectively, and intermediate levels were
evenly spaced on a logarithmic scale between them.

Mixture Model Analysis

Motion identification errors were characterized using the Zhang
and Luck (2008) two-component mixture model. This model was
initially developed for characterizing working memory perform-
ance, but has since been applied in many domains including
motion perception (Bae & Luck, 2019), although not to identify
signatures of continuous verses discrete motion perception.
According to this mixture model the error in identifying motion
direction on each trial arises from one of two processes (see Figure
2A). If the global motion direction is perceived successfully, the
report error arises from a von Mises distribution (similar to the cir-
cular normal) centered at zero with a standard deviation that
reflects the precision of responses. Alternatively, if the motion
direction fails to be perceived altogether, response errors are
guesses that necessarily follow a uniform distribution due to the
circular nature of the motion direction space. Fitting this model to
response errors provides an estimate of the rate of guessing (g)
and the amount of noise in responses on nonguess trials (SD).
Whereas continuous models predict that manipulations of motion
coherence should primarily affect standard deviation (see Figure
2B), discrete models predict that only the rate of guessing should
vary with motion coherence (see Figure 2C).
The mixture model was first fit separately to each participant

and each coherence level condition using standard maximum like-
lihood estimation procedures (see model fitting in the online
supplemental material). This approach provides estimates of guess
rate (g) and response variability (SD) for each coherence condi-
tion, and the critical question is whether these parameters change
across coherence levels. Although it seems reasonable to address
this question by performing significance testing on the parameter
estimates resulting from this full model, simulation studies suggest
that this approach is seriously flawed (see model recovery in the
online supplemental material). To more rigorously assess whether
guessing and standard deviation vary with motion coherence, re-
stricted models that force one or both parameters to be fixed across
conditions were also fit to each participant’s data. The Bayesian
information criterion (BIC; Schwarz, 1978) was used to compare
these restricted models with each other, and to the full model in
which both g and SD are free to vary. For example, comparing the
full model with one where the guess rate is restricted across condi-
tions provides for an omnibus test of whether guess rates vary
across two or more conditions. With five coherence levels the full
model has 10 free parameters, both the fixed SD and fixed guess
rate models have six free parameters, and the null model that
forces both SD and g to be fixed across coherence levels has two
parameters. BIC penalizes model complexity based on the number
of parameters in a manner motivated by Bayesian inference and
provides for reliable model recovery (see Table S1 in the online

supplemental material). However, the results are similar if models
are compared using Akaike’s information criterion (AIC; Akaike,
1973; see Table S2 in the online supplemental material), with any
exceptions noted in the following text.

Results

Figure 3A shows error distributions for each of the five coher-
ence conditions in Experiment 1a. When coherence was high
(50%, right), most response errors were tightly centered around
zero, indicating that participants were often highly accurate in
identifying the true motion direction. However, there are also trials
on which the errors were extremely large and uniformly distrib-
uted, indicated by the long flat tails in the error distribution. More-
over, as coherence is lowered the central part of the distribution
does not appear to widen, but rather, there are more and more
extremely large errors. In line with this pattern, fitting the full mix-
ture model separately to each condition suggests that the rate of
pure guessing increases substantially as coherence is lowered (see
Figure 3B), but the standard deviation of responses that are not
guesses is nearly constant across coherence levels (see Figure 3C).

To investigate whether guess rate and standard deviation vary
across conditions, a common approach is to test whether parameter
estimates from the full model differ significantly across conditions.
For example, a repeated measures analysis of variance (ANOVA)
confirms that the rate of pure guessing increases as coherence is
lowered, F(4, 100) = 282.60, p , .001, g2

P ¼ :92. However,
whereas mean estimates of SD appear to be nearly identical across
coherence levels, an ANOVA suggests a small but significant
effect, F(4, 100) = 2.85, p = .03, g2

P ¼ :10. This ANOVA
approach, however, is inappropriate for several reasons. First,
whereas null-hypothesis significant testing can only reveal evi-
dence against the null hypothesis, and may be biased toward doing
so (Berger & Sellke, 1987), our goal is to identify invariances in
parameters across conditions, so we must be able to accurately
quantify evidence for the null as well as against it. One way to do
so is with a Bayesian approach to ANOVA, and a Bayes factor
(BF) ANOVA with default priors (Rouder et al., 2012) confirms
that guess rates vary across coherence levels (BF10 . 100), but
suggests that there is only weak evidence (Raftery, 1995) that SD
varies with coherence (BF10 = 1.55). This result is similar to that
provided by the standard ANOVA, however, the Bayes factor
ANOVA shares several other potential problems with applying an
ANOVA to parameter estimates from the full model. First, signifi-
cance tests on parameter estimates ignore the shape of the likeli-
hood function, and so might mischaracterize biases in parameter
estimates as true effects. In particular, SD estimates from the mix-
ture model are biased high when guess rates are greater than 60%
(Sutterer & Awh, 2016), such as in the most difficult conditions
here. Consequently, whereas the ANOVA approach characterizes
the small increase in SD at the lowest coherence condition in Fig-
ure 3C as a true effect, it is possible that this small increase reflects
a bias in parameter estimation. To make matters worse, several
assumptions of the ANOVA are violated, as variance in the param-
eter estimates changes with overall performance, and the bounded
parameter estimates are not normally distributed.

Not surprisingly, simulation studies revealed that the ANOVA
approach yields inflated Type I error rates, suggesting significant
effects in SD when in fact there are none (see model recovery in the
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online supplemental material). Fortunately, however, the simula-
tions reveal that formal model comparison using the BIC statistic
provides for a reliable way to assess whether parameters do or do
not change across conditions. For example, in the fixed guess model
the guess rate is forced to be constant across coherence levels. This
model clearly provides a poor fit to the data (see Figure 3A), and
BIC favors the full model over this fixed guess model (average
DBIC = 71), suggesting that guess rates indeed vary across condi-
tions. Alternatively, the fixed SD model, in which guess rate varies
across coherence levels but SD is constant, provides an almost iden-
tical fit to the data as the full model (see Figure 3A), and BIC favors
the fixed SDmodel over the full model (DBIC = 22). Table 1 shows
average BIC values and the number of participants fit best by each
model (in parentheses), and clearly suggests that in Experiment 1a
guess rate varies with motion coherence, whereas SD is constant.
The amount of time that a motion stimulus is displayed may

have a substantial influence on global motion processing (Wata-
maniuk, 1993). In particular, it is possible that our failure to

observe changes in response precision (SD) with coherence in
Experiment 1a was due to the long 1,000-ms stimulus period,
which may have caused precision on nonguess trials to be at ceil-
ing. To test whether SD varies with coherence when less time is
available to process the motion stimulus, in Experiment 1b the
stimulus duration was shortened to 500 ms. The same full and re-
stricted models were fit to these data, and the results again suggest
that the fixed SD model provides a better fit to the data than either
the full model or the fixed guess model (see Table 1 and Figure S2
in the online supplemental material), replicating the result from
Experiment 1a that motion coherence affects only guess rates.
Comparing the fixed SD model parameters across experiments
(see Figure S3 in the online supplemental material) suggests that
stimulus duration did not affect SD, t(50) = .79, p = .43, d = .22. A
BF t test (Rouder et al., 2009) applied to these parameter estimates
also suggests that precision is invariant with stimulus duration
(BF01 = 2.80). Alternatively, comparing guess rates across condi-
tions (analyzed with a mixed-effects ANOVA) suggests that

Figure 3
Experiment 1a Results

Note. Error distributions were aggregated across participants (A), and models were fit to these averaged distributions (lines) for
display purposes. Fitting the full model to individuals suggests that whereas guess rates decrease substantially as coherence is
increased (B), the standard deviation of nonguessing responses is nearly invariant across conditions (C). Error bars in all figures
denote standard errors of parameter estimates across participants. See the online article for the color version of this figure.

Table 1
Model Comparison Using Bayesian Inference Criterion (BIC) for Experiments 1 Through 3

Model
Experiment 1a

(N = 26)
Experiment 1b

(N = 26)
Experiment 2a

(N = 29)
Experiment 2b

(N = 29)

Full model 22 (0) 20 (0) 8 (3) 10 (5)
Fixed SD model 0 (26) 0 (24) 31 (4) 39 (2)
Fixed guess rate model 93 (0) 46 (1) 0 (22) 0 (22)
Null model 112 (0) 63 (1) 142 (0) 183 (0)

Note. BIC values were averaged over participants. Items in bold represent the preferred model. Values in
parentheses indicate number of participants for which respective model was preferred.
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shortening the stimulus duration increased the rate of guessing,
Fð1; 50Þ ¼ 5:25; p ¼ :03; g2

P ¼ :09; BF10 ¼ 1:67, and a signif-
icant interaction suggests that this effect was slightly larger
when coherence was high (Fð4; 200Þ ¼ 3:41; p ¼ :01; g2

P ¼ :06;
BF10 ¼ 3:14).

Discussion

Most theories of global motion perception follow a standard
encoding-decoding framework, in which local motion directions
are first encoded by a population of motion-sensitive units, and a
global estimate is derived by pooling across units (see Webb et al.,
2007). The models are highly similar to working memory models
that utilize an encoding-decoding framework (e.g., Bays, 2014),
and differ from one another primarily in the algorithm that dictates
how local signals are pooled. To assess whether these models can
account for the results of Experiment 1, responses were simulated
from the models assuming the design and stimulus properties of
Experiment 1, and the mixture-model analysis was applied to the
resulting synthetic data. Critically, the estimated variability in
response errors (SD) increased with coherence for all such models,
regardless of the particular pooling algorithm used (see Table S3
in the online supplemental material). This result is not surprising,
as decreasing coherence necessarily leads to more noise in the
local motion signals, such that any global direction estimate that
pools over all local signals will become gradually less precise.
However, the empirical results of Experiment 1 suggest that the
precision of responses is constant across a range of coherence lev-
els, whereas coherence has large effects on the rate at which global
motion perception fails entirely. These results suggests that, for
the transparent motion stimuli in Experiment 1, global motion per-
ception is a discrete process that either occurs with highly accurate
direction perception or fails completely.
Whereas these results cast doubt on the idea that all local

motion signals within the stimulus region are pooled, they are in
line with the proposal that signal dots are first segmented from
noise dots, and then the direction of this subset is identified (Brad-
dick, 1993). There is some evidence for segmentation, such as the
finding that the perceived speed of signal dots does not vary with
coherence (Schütz et al., 2010), suggesting that properties of the
signal dots can be perceived without any influence from noise
dots. Our results follow if the segmentation process is discrete:
successfully segmenting the signal dots on some trials leads to
very high precision regardless of coherence because the motion
direction of the subset is obvious. However, rather than segmenta-
tion occurring only partially on other trials, segmentation fails al-
together, and global motion is not perceived at all. Such a discrete
segmentation stage seems reasonable in natural viewing condi-
tions, where some minimal amount of local motion energy in pre-
cisely the same direction should be required for the visual system
to combine disparate parts of space together into a coherent mov-
ing object. The transparent motion stimulus used in Experiment 1,
in which all signal dots move in the same direction, mimics such
natural situations and has therefore been used extensively to study
motion perception (e.g., Scase et al., 1996). However, there are
many ways to build global motion stimuli, and some of them may
be less likely to evoke the segmentation process (Dakin et al.,
2005; Schütz et al., 2010). In Experiment 2, such a motion stimu-
lus was tested for signatures of continuous and discrete processing.

If our observation of all-or-none direction identification in Experi-
ment 1 reflects discrete segmentation, then we should not observe
discrete processing in Experiment 2 when signals are not seg-
mented from noise.

Experiments 2a and 2b

Method

Participants

Thirty adults participated in Experiment 2a (22 women, Mdn
age = 19) and thirty in Experiment 2b (24 women, Mdn age = 19).
One participant was excluded from Experiment 2a and one from
Experiment 2b as the pure-guessing model fit their data better than
a model that additionally allowed for target responses.

Stimuli and Procedure

Experiment 2 was identical to Experiment 1 with the following
exceptions. Whereas in Experiment 1 the motion direction of each
dot was designated as either signal or noise, in Experiment 2 motion
directions for each dot were sampled from a wrapped Gaussian dis-
tribution (see Figure 1B and Watamaniuk et al., 1989). The mean of
this distribution determined the global motion direction on each trial,
and the concentration around this mean determined motion coher-
ence. Coherence is defined as the mean resultant length of the distri-
bution (R), which is a function of the variance of the underlying

Gaussian distribution (r2; R ¼ e�r2=2). Coherence was manipulated
across five levels (R ¼ 19

�
; 26

�
; 35

�
; 43

�
; 51

�
) that were chosen to

provide similar overall performance as the five coherence conditions
in Experiment 1. Stimuli were presented for 1,000 ms in Experiment
2a and 500 ms in Experiment 2b.

Results

The overall accuracy of responses in Experiment 2a (see Figure
4A) was qualitatively similar to that in Experiment 1a (see Figure
3A). However, whereas in Experiment 1 the effect of coherence was
in guess rate but not SD, the opposite pattern held for the Gaussian
motion stimuli in Experiment 2. The full model was now preferred
over the fixed SD model (DBIC = 23), suggesting that the variability
in motion direction estimates (SD) increased with decreasing coher-
ence. This pattern was supported by a significant effect of coherence
on SD parameters as estimated in the full model (see Figure 4C),
F(4, 112) = 51.00, p , .001, g2

P ¼ :65; BF10 > 100). Moreover,
the fixed guess model was preferred over the full model (DBIC = 8),
suggesting that only response precision varied with motion co-
herence, whereas guess rate was invariant (see Table 1). However,
the fixed guess model and full model provided similar performance
when assessed using AIC (see Table S3 in the online supplemental
material), and estimates of guess rates from the full model (see Fig-
ure 4B) do appear to vary somewhat across coherence conditions
(F(4, 112) = 50.06, p , .001, g2

P ¼ :64; BF10 > 100). Critically,
although it is not entirely clear whether guess rates varied with co-
herence in Experiment 2a, precision clearly did vary with coherence
as is predicted by local pooling models.

The results of Experiment 2b, in which stimulus duration was
reduced from 1,000 ms to 500 ms, largely replicate Experiment 2a:
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There was clear evidence that SD varied with motion coherence, and
mixed evidence that guess rates varied as well (see Table 1 and
Figure S4 in the online supplemental material). Comparing parame-
ters from the fixed guess model across Experiments 2a and 2b
(the preferred model by BIC in both experiments) suggests that
stimulus duration had no effect on guess rate, t(56) = .03, p =
.97, d = .00, BF01 = 3.84, or SD, F(1, 56) = 1.00, p = .32,
g2
P ¼ :02; BF01 ¼ 4:54; see Figure S5 in the online supplemental

material. But taken together, Experiments 2a and 2b clearly
show that the precision of responses varies with coherence for a
Gaussian motion stimulus, and that this pattern holds for a range
of stimulus durations.

Discussion

The all-or-none direction identification of transparent motion
in Experiment 1 may have reflected a discrete segmentation of
signal and noise dots. If so, then identifying the global direction
of Gaussian motion in Experiment 2 should not be discrete, as
it is unlikely to be segmented into signal and noise. In line with
this prediction, varying the coherence of Gaussian motion
clearly affected the precision of identification reports. This pat-
tern implies a continuous process in which the direction of all
dots in the stimulus are pooled to derive an average heading
direction, in line with standard models of global motion
perception.
The dissociation between transparent and Gaussian motion is

remarkable given that they are so similar, which raises a ques-
tion: are the differences observed across Experiments 1 and 2
driven by the blocked nature of the stimulus types? For exam-
ple, perhaps the repeated exposure to transparent or Gaussian

motion within each experiment caused participants to adopt a
particular strategy that differed across experiments. Alterna-
tively, the motion-identification process might be determined by
statistical properties of particular stimuli: Segmentation occurs
when a small subset of dots share nearly identical directions,
and pooling occurs when local directions are similar but not
identical. To test these possibilities, in Experiment 3 transparent
and Gaussian motion trials were mixed within the same experi-
ment. If segmentation and pooling are dynamic processes that
depend on the stimulus, then the dissociation observed across
Experiments 1 and 2 should replicate in this mixed design, such
that identification is discrete for transparent motion and continu-
ous for Gaussian motion.

Experiment 3

Method

Participants

Forty-nine adults (22 women, Mdn age = 19) participated in
Experiment 3 in exchange for course credit. Fifteen were excluded
from analysis because a pure-guessing model fit their data better
than the full model in one or both stimulus conditions. One addi-
tional participant was excluded because their performance was
exceptionally poor in the more difficult conditions, leading to unre-
liable parameter estimates. Although this exclusion rate is higher in
Experiment 3 than in the previous four experiments, the results
largely replicate those from Experiments 1 and 2. It is therefore
unlikely that participant exclusion criteria are affecting the results.

Figure 4
Experiment 2a Results

Note. Error distributions were aggregated across participants (A), and models were fit to these averaged distributions (lines) for
display purposes. Fitting the models to individuals suggests that guess rates may decrease somewhat as coherence is increased
(B), but unlike Experiment 1 the standard deviation (SD) of nonguessing responses now varies substantially with motion coher-
ence (C). See the online article for the color version of this figure.
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Stimuli and Procedure

Experiment 3 was similar to Experiments 1 and 2, with the fol-
lowing exceptions. Each trial consisted of either a transparent
motion stimulus or a Gaussian motion stimulus with a 500-ms du-
ration. Motion coherence was either low or high for transparent
motion (15% or 33% signal dots) and Gaussian motion (268 or 438

mean resultant length). These coherence levels match the second-
to-lowest and second-to-highest conditions from Experiments 1
and 2, with the goal of observing robust effects of coherence that
maximally differentiate between the fixed guess and fixed-preci-
sion models. In this 2 3 2 factorial design, stimulus type and co-
herence level were counterbalanced and presented in random
order, providing 200 trials for each condition (800 total).

Results and Discussion

Figure 5 shows the resulting response error distributions, and vis-
ual inspection suggests that the differential effects of coherence
across stimulus types was replicated: For transparent motion (top),
coherence primarily affected the rate of guessing, seen as a rise in

the long flat tails, whereas for Gaussian motion (bottom) coherence
affected SD, seen as a widening of the central part of the distribu-
tion. A full model, in which guess rate and SD parameters were free
to vary across both stimulus and coherence conditions, was com-
pared with a restricted model in which model parameters were dif-
ferentially fixed depending on the stimulus type: For transparent
motion only guess rate varied across coherence, and for Gaussian
motion only SD varied across coherence. Both models fit well (see
Figure 5), and BIC suggests that the restricted model provided a bet-
ter account than the full model (DBIC = 6.4, N = 28/33). However,
AIC results were less clear, and the full model provided a better fit
(DAIC = 3, N = 21/33), possibly because guess rate varied slightly
across coherence levels for Gaussian motion as in Experiment 2. To
test this possibility, the restricted model was amended to allow guess
rate to vary for both transparent and Gaussian motion, whereas SD
was again fixed across coherence conditions for transparent motion.
This model was preferred over the full model according to both BIC
(DBIC = 4.7, N = 32/33) and AIC (DAIC = .07, N = 21/33),
although AIC was more ambiguous. Overall, these results replicate
the patterns observed across Experiments 1 and 2, implying that
motion segmentation and pooling processes can be deployed

Figure 5
Experiment 3 Results

Note. Response errors are aggregated over participants for transparent motion (top) and
Gaussian motion trials (bottom). When transparent and Gaussian motion trials were mixed
within the same experiment, fitting the model to individuals suggests that guess rate varies
with coherence for transparent motion, but the SD of nonguess responses varies with coher-
ence for Gaussian motion. See the online article for the color version of this figure.
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differentially on a trial-by-trial basis, driven by statistical properties
of the motion stimulus.

General Discussion

Most theories of global motion perception assume that global
directions are derived by pooling local motion signals over space.
We tested a straightforward prediction of such models: identifying
global motion directions should become gradually less precise as
motion coherence decreases. However, in Experiment 1a lowering
the coherence of a transparent motion stimulus led to more pure
guessing responses, whereas the precision of successful identifica-
tion was identical across a large range of coherence levels. This
result was replicated with a shorter stimulus duration (Experiment
1b), and when another type of motion stimulus was present
(Experiment 3). This finding of all-or-none global motion identifi-
cation is among several perceptual processes that have been shown
to be discrete, including word identification (Swagman et al.,
2015), sensory memory (Pratte, 2018), and the attentional blink
(Asplund et al., 2014). Although such claims go against decades
of work rooted in signal detection theory, going forward we
believe it will be essential to consider that many cognitive and per-
ceptual mechanisms might involve discrete processing stages.
We hypothesized that the all-or-none nature of motion identifi-

cation in Experiment 1 reflected a discrete segmentation process,
such that the subset of signal dots is either successfully isolated
from noise dots, or global motion fails to be perceived altogether.
The results of Experiment 2 support this proposal: for Gaussian
motion, in which local motion is not easily segmented into signal
and noise components, direction identification was no longer dis-
crete but exhibited signatures of local pooling. This dissociation in
how motion is processed for different stimulus types was repli-
cated in Experiment 3 when both motion types were presented
intermixed, suggesting that the particular properties of these stim-
uli drive discrete segmentation or continuous pooling processes in
real time. Local pooling is at the heart of many models of global
motion perception, and it is interesting that the visual system can
utilize such a process for Gaussian motion. However, doing so is
akin to finding the average heading direction of a flock of birds,
which hardly seems like the primary purpose of the visual motion
system. Instead, we suggest that true global motion perception
should be characterized by the all-or-none segmentation of visual
space into discrete, coherently moving subsets. For example,
knowing that a single bird is just that: a coherent object with an
overall global motion direction, even though its wings, head, and
tail have motion energy in many directions simultaneously.
Segmenting the visual world into coherently moving objects,

and pooling motion energy within those objects to determine their
heading, are both important processes when viewing natural
scenes comprised of many moving things. Indeed, some models
seek to accomplish both segmentation and pooling from local
motion energy (e.g., Grossberg et al., 2001; Tlapale et al., 2010).
Moreover, area MT includes some neurons that represent pooled
motion directions, whereas others represent segmented directions
(McDonald et al., 2014; Xiao & Huang, 2015). The results of
Experiments 1 through 3 suggest that segmentation and pooling
can be measured in isolation by using different types of motion
stimuli. Although this result may seem surprising given how simi-
lar transparent and Gaussian motion are at face value, previous

studies have also shown that subtle stimulus differences can have
substantial impacts on how motion is perceived. For example, one
approach for testing local pooling algorithms utilizes motion stim-
uli comprising asymmetrical or bimodal distributions of local
motion directions, as particular pooling algorithms make unique
predictions for how such stimuli should be perceived (Zohary et
al., 1996; see also Webb et al., 2010). Critically, the results sug-
gest that the way local motion signals are combined depends on
statistical properties of the motion stimulus: when one direction
has substantially more energy than the others, this maximum is the
perceived direction (“winner take all”). Alternatively, when multi-
ple directions have similar energy, their average is the perceived
direction (“vector averaging”). Similarly, when two coherent
motion signals overlap, they are perceived independently as if seg-
mented from one another, if their motion directions are sufficiently
different. But if the directions are similar their average direction is
perceived (Nichols & Newsome, 2002; Treue et al., 2000). Taken
together, these results suggest that the visual system can pool
motion directions in cases where such pooling seems reasonable,
such as with Gaussian motion, and can explicitly segment visual
signals from one another and from the background when a subset
of local elements have highly similar directions, as is the case with
transparent motion.

Winner-take-all decision algorithms, in which the strongest of
multiple local motion signals is taken as the perceived direction, are
sometimes equated with the process of segmenting signal from
noise (e.g., Medathati et al., 2017; Salzman & Newsome, 1994;
Zohary et al., 1996). However, it is important to distinguish
between merely taking the maximum local motion response as the
global motion direction, and true segmentation in which coherently
moving local elements are grouped together and isolated from other
stimuli (e.g., Schütz et al., 2010). For example, we show in simula-
tion studies that a winner-take-all decision algorithm predicts that
precision should decrease as coherence is decreased, even for trans-
parent motion stimuli (see the online supplemental material). This
isn’t surprising: as coherence is lowered, the maximum neural
response to local motion signals becomes more likely to be further
from the true coherent direction, as the maximum response must be
taken across both signal and noise dots. However, the results of
Experiments 1a, 1b, and 3 suggest that, for transparent motion,
response precision is constant and remarkably high across a range
of coherence levels. This result implies that the subset of coherent
signal dots can be explicitly segmented from the noisy background,
even at very low coherence levels, such that accurately identifying
the direction of this subset is trivial. We initially suspected that the
motion system might revert to pooling across both signal and noise
dots when the segmentation process fails for transparent motion,
particularly in Experiment 3 where both transparent and Gaussian
motion stimuli were intermixed. But even in this case response pre-
cision was the same for low- and high-coherence transparent
motion stimuli, suggesting that when segmentation fails, global
motion simply fails to be perceived altogether. However, more
work is needed to identify the conditions that trigger segmentation,
and whether there might be cases in which segmentation and pool-
ing can operate simultaneously.

Many previous results in motion perception stemmed from
exploring a variety of stimulus parameters and stimulus types (e.g.,
Webb et al., 2007), and this approach provides a promising avenue
for further testing the notions of continuous pooling and discrete
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segmentation. For example, we observed discrete segmentation with
typical transparent motion stimuli in which all signal dots move in
precisely the same direction and suspect that it is the presence of
highly similar motion across local elements that evokes the segmen-
tation process. However, the motion directions of signal dots could
instead be drawn from a Gaussian distribution to examine whether,
for example, local motions are only segmented if the similarity of
their directions is above some threshold. Likewise, stimulus charac-
teristics such as dot speed (Braddick, 1993) and dot lifetime (Pilly &
Seitz, 2009) might affect whether signal dots are segmented from
noise. For example, although Bae and Luck (2019) did not conduct
formal model comparisons, their results suggest that manipulating
the coherence of a transparent motion stimulus might affect both
guess rate and precision when the lifetime of dots is extremely short
(�16 ms). One consequence of such brief dot durations is a marked
decrease in signal strength for each dot’s local motion direction,
which might undermine the segmentation process in a similar man-
ner as adding noise to the local signal directions. Exploring how the
signatures of discrete and continuous processing vary across this
large stimulus space provides a promising avenue for further testing
and refining the mechanisms that underlie continuous pooling and
discrete segmentation.
Here we have compared predictions of discrete and continuous

processing by modeling errors in an identification task, but several
other approaches have been used to accomplish the same goal.
The most common approach is to draw receiver operating charac-
teristic (ROC) curves in a detection task: these curves should be
straight lines if they arise from a discrete process, and curved lines
if from a continuous process. ROC curve analysis has revealed
evidence for continuous processing in some cases (e.g., Green &
Swets, 1966) and discrete processing in others (e.g., Rouder et al.,
2008). However, using ROC curves to distinguish between contin-
uous and discrete processing has serious limitations, whether they
are constructed by manipulating response bias or by using confi-
dence ratings (e.g., Bröder & Schütz, 2009; Rouder et al., 2021).
More recently, formal modeling of confidence rating distributions
(Province & Rouder, 2012) and reaction time (RT) distributions
(Zhou et al., 2021) has been used to compare discrete and continu-
ous theories. There is not a consensus on which of these
approaches is the most appropriate for comparing discrete and
continuous processing, and in most applications an entire cognitive
process (e.g., working memory, recognition memory, perception)
is determined to be mediated by either continuous or discrete proc-
essing, making it difficult to directly compare purportedly continu-
ous and discrete cases. Here, however, using the Zhang and Luck
(2008) mixture-model approach we observe a remarkably clear
dissociation between two highly similar stimuli in the same task:
Discrete processing of transparent motion and continuous process-
ing of Gaussian motion. Going forward, these motion stimuli may
therefore provide a powerful platform for comparing the various
approaches to discerning continuous and discrete processing.
Although the Zhang and Luck (2008) mixture model has been

ubiquitous in working memory research, several alternatives have
been proposed that make substantially different assumptions, such
as eschewing the existence of guessing altogether (Bays, 2014;
Schurgin et al., 2020; Van Den Berg et al., 2012). These models
can produce error distributions with long tails that look similar to
the uniform tails that arise from guessing, without the explicit
assumption of pure guessing. However, we suspect that all such

single-process models predict that when data are fit with the two-
process mixture model, both SD and guess rates should vary at
least somewhat with any manipulation of stimulus strength, such
as coherence. Therefore, our finding that precision is completely
invariant across a range of coherence conditions for transparent
motion, whereas guess rates vary substantially, provides strong
evidence for a pure guessing process. Our results also have impor-
tant implications for studies that examine deficits in motion per-
ception, such as deficits found in autism (Manning et al., 2015)
and schizophrenia (Chen et al., 2003), as they might occur in the
discrete segmentation or continuous local-pooling processes. More
generally, examining the continuous and discrete nature of motion
processing across a variety of conditions will provide critical evi-
dence for understanding how the visual system carves the world
into coherent, moving objects.
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